Fad

NAVAL POSTGRADUATE SCHOOL
Monterey, California

e

-
c
—

o I,
B 3 o]
a 1
8 m
st

-’ S
(‘ Y 4!
s a.;{ }

g

THESIS

' STRUCTURED VERSUS OBJECT-ORIENTED DESIGN
O= OF ANAVY
‘:’_ :—_;—E BATTLE GROUP LOGISTICS SIMULATION SYSTEM
M~ =

= b
0= ’
2 __%—_ Bernadette Clemente Brooks
é March 1993
< Thesis Advisor: C. Thomas Wu
Approved for public release; distribution is unlimited.

16825
WTHTRATEN

L
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS
) ORITY L2 XTION AUTHORITY 3 DISTRIBUTIONAVATLABILITY OF REPORT |
ST TSN SR A DTRE SCTET Approved for public release;
distribution is unlimited
4. PERFORMING ORGANIZATION REPONRT NUMBER(S) "5, MONITORING ORGANIZATION REPORT NOMBERSY |
8. NAME OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, Stats, and ZIP Code)
Monterey, CA 93943-5000
Monterey, CA 93943-5000 onterey, CA 93
OF FUNDING/SPONSORN (85, OFFICE SYMEOL | 9. PROCUREMERT INSTRUMENT TSERTIFICATION NOMBER |
ORGANIZATION (if applicable)
8c. ADDRESS (City, State, and ZIP Code) 70. SOURCE OF FUNDING NUMBERS
OGRA OJECT TASK WORK UNIT
ELEMENT NO.] NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification) . o . .
Structured Versus Object-Oriented Design of a Navy Battle Gioup Logistics Simulation System

12. PERGSONAL AUTACR(D)
Bernadette Clemente Brooks

TR TorE GE FEPORT T35 TIME COVERED 12 DATE OF REPORT (Yaar, Month, Day) | 15. PAGE COUNT.
aster's Thesis FROM Q1/92 TO:03/93 1993, March 25 251

The views expressed in this thesis are those of the author and do not reflect the
ofﬁc1al policy or position of the Department of Defense or the United States Government.

18. SUBJECT TERMS (Camique on reverse "t necessary and identify by l.::lock numbgr)]
Structured Programming, Object-Oriented Programming, Logistics Support

Systems

§7 COSATI CODES
I FIELD GROUP SUB-GROUP

19. ABSTRACT (Conltinue on reverse it necessary and identify by block number)
This thesis deals with the design of a Navy battle group logistics simulation system to support battle group logistics

coordinators. BGLCSS 2.0, the Battle Group Logistics Coordinator Support System, was designed and developed
using a structured programming paradigm. A subset of BGLCSS 2.0 was then designed using an object-oriented
programming paradigm. We present the components of each of these designs in C and C++.

Our approach was to compare and critique these two designs with respect to the extent to which their respective
programming paradigms meet the software goals of software reusability and ease of program extension and
maintenance. We designed the graphical user interface using TAE Plus which generated code in both C and C++,
providing an easy way to transport the interface from a C implementation to a C++ implementation in the future. The
designs of this real world Navy tactical decision aid clearly demonstrate the problems associated with using structured
programming paradigm and the benefits of using an object-oriented programming paradigm, especially for large
systems.

27 ABSTRACT SECURITY CLASSIFICATION.

UNCLASSIFIED
22b. TELEPHONE (Include Area Code}
408) 646-3391

. /
m UNCLASSIFIED/UNLIMITED D SAME AS RPT. [7] DTIC USERS

22c. OFFIGE SYMBOL

C. Thomas Wu

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

——

Approved for public release; distribution is unlimited

Structured Versus Object-Oriented Design
of a Navy
Battle Group Logistics Simulation System

by
Bernadette Clemente Brooks
B.S., Psychology, Georgetown University, 1980
M A., International Studies, The Johns Hopkins University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

March 1993

Author: &“_ o M6 A

Bernadette Clemente Brooks

Approved By: m

C. Thomas Wi Thesis Advisor

Roger Stemp, ond Reader

CDR Gary s, ¢hairman,
Departmen puter Science

ABSTRACT

This thesis deals with the design of a Navy battle group logistics simulation system to
support battle group logistics coordinators. BGLCSS 2.0, the Battle Group Logistics
Coordinator Support System, was designed and developed using a structured programming
paradigm. A subset of BGLCSS 2.0 was then designed using an object-oriented
programming paradigm. We present the components of each of these designs in C and
C++.

Our approach was to compare and critique these two designs with respect to the extent
to which their respective programming paradigms meet the software goals of software
reusability and ease of program extension and maintenance. We designed the graphical user
interface using TAE Plus which generated code in both C and C++. This mechanism
provides an easy way to transport the interface from a C implementation to a C++
implementation in the future.

The design of this real world Navy tactical decision aid clearly demonstrate the
problems associated with using structured programming paradigm and the benefits of using
an object-oriented programming paradigm, especially for large systems.

Acce.ion For
NTIS CRAg! J, N
DHIC jab f-

U g e cog
Jostits o

——_

1L

I11.

IV.

TABLE OF CONTENTS
INTRODUCTION ..ottt e s]
A. BACKGROUND OF BGLCSS ...ttt et seens 1
B, OBIECTIVES ..ttt r e et e 3
C. SCOPE.. ...ttt ettt ettt et et en s 3
D. ORGANIZATION......ooiiitieritrent ettt s et e estses e et ssesensenens 4
BACKGROUND OF THE PROGRAMMING PARADIGMS.......cccooviriienne 5
A, GENERAL. ...ttt ettt e ettt se s s snes s s en 5
B. GOALS OF SOFTWARE DEVELOPMENTcccceoiimiiiirceninnieinenes 6
C. STRUCTURED PROGRAMMING PARADIGMc..cocceevininiciinrcriieenns 7
1. Separate Code and Data...........cccceevurecerreerrercneeenieesieenrrnieries s seresaeseens 7
2. Built-In Data Types....c..ooii ettt 8
3. Top-Down Functional Decomposition and Function-Based Design......9
4. Distributed Functionalitycocovrrmricinicencerininncre st 10
5. Limited Code REUSE......ccoiir ittt 11
D. OBIJECT-ORIENTED PROGRAMMING PARADIGM.......c.cccooevrvinvcncnusne 11
1. Data Hiding and Data AbStraction..........ccccceccermeeierieeccrinienecvnninnnes 13
B, CIASS it e st 14
b. Member Functionsoccomvrmiciieniiiiiiccccecee e 14
c. C++ Constructors and Destructorscccccoevceviincrrienrecinennene 14
2. Inheritance and Class Relationshipsc.ccoceeeenecninicninnincenines 15
3. PolymoOrphiSm...ccccooiiriiiiiiiiice et sere e st e e 16
E. COMPARISON OF THE PARADIGMS........cccooviirteieeneee e 18
BGLCSS 2.0 GRAPHICAL USER INTERFACE DESIGN........ccoccocvvenniiniirnnne. 20
A. TAE PLUS OVERVIEW ...t sienneeaea et 20
B. TAEPLUS WORKBENCH.........ccooniiieirc et 22
C. BGLCSS 2.0 GUIDESIGN ..ottt 27
BGLCSS 2.0 STRUCTURED DESIGN........ccocooviiieinecieeee e 33
A, GENERAL. ...ttt ettt ar e 33
B. PROGRAM SPECIFICATIONS ..ot 34
C. SYMBOLIC CONSTANTS ..ottt et 34
D, DATA STRUCTURES.........cooir e s 35
L. Battle Groupsccocoveviiiiirieeceece et 35
2. ShIPS s ettt st st 38

3. EVENES o e et 4]

E. BGLCSS 2.0LIBRARY DESIGNcooiiiiiiiiinitctceeee et 46

F. PROGRAM INTEGRATIONccccoiiiiininiiiiiiieinicicieneirereee s 49

G. STRUCTURED DESIGN PROBLEMSc.cconiiiiiiiinneenccreercenenne 50

V. BGLCSS 2.0 OBJECT-ORIENTED DESIGNcooooiiiiirieee st 52
A, CLASSES ..ottt sttt st e e e e st 52

1. Battle Group Classcccocemmiimieeeeeecic ittt 54

2. Ship Class Hierarchy.....cc..cooeoiiininiiniiiiiei et 56

3. Logistics Events Class Hierarchyccocociieeniniiicinninne e 58

B. SYMBOLIC CONSTANTS ..ottt vt 64

C. OBJECT-ORIENTED DESIGN BENEFITScccoocoiniiiiiicecincnne 64

VI. CONCLUSION AND RECOMMENDATIONS ...t 66
APPENDIX A. BGLCSS 2.0 GRAPHICAL USER INTERFACE PANELS 67
APPENDIX B. BGLCSS 2.0 CPROGRAM LISTING.c.ccooiiviiniccrecviiccenene 92
APPENDIX C. BGLCSS 2.0 C++ PROGRAM LISTINGccccocniviiniccininee 225
REFERENCES ...ttt ettt st st st e et ss e suse st easacnan 238
INITIAL DISTRIBUTION LIST ...oociiiiiii et snenenaesncnan s 240

v

Figure 1,

Figure 2,

Figure 3,

Figure 4,

Figure 5,

Figure 6,

Figure 7,

Figure 8§,

Figure 9,

Figure 10,
Figure 11,
Figure 12,
Figure 13,
Figure 14,
Figure 15,
Figure 16,
Figure 17,
Figure 18,
Figure 19,
Figure 20,
Figure 21,
Figure 22,
Figure 23,
Figure 24,
Figure 25,
Figure 26,
Figure 27,
Figure 28,
Figure 29,
Figure 30,
Figure 31,
Figure 32,
Figure 33,
Figure 34,
Figure 35,
Figure 36,
Figure 37,
Figure 38,
Figure 39,
Figure 40,
Figure 41,
Figure 42,

LIST OF FIGURES
BGLCSS 2.0 Within the NTCS-A System Architecturecccceeeennen. 2
Structural Program Procedures Separate From Data...............cccoccevene. 8
Object Encapsulating Related Functions and Data...........cccooeeincninnen, 12
TAE Plus WorkBench Panel..........ccocooiiiiiiiiicee e, 20
TAE Plus WorkBench Resource File Selection Panel............c..cocoeeee. 21
TAE Plus Panel Specification Panel ... 22
TAE Plus Panel Details Panel...........c.ccooiiiiniiiiie e 23
TAE Plus Specify Initial Panels Panel............ccococoiiiniinncnninnnn. 23
TAE Plus Connection Specification Panel ... 24
TAE Plus Item Specification Panel ... 25
TAE Plus Item Constraints Paneloooiiiieiiiincine e 26
TAE Plus Push Button Presentation Panelc.cccoooiniiiiiiiinnn. 26
TAE Plus Message Presentation Panel ..., 27
JOTS T Menu TTEE ...ttt st seens 27
TAE Plus Files Generated and Function Invocation for Setup Module28
BGLCSS 2.0 Set Up Battle Groups Initial Panel.............c..cccocooeane. 30
BGLCSS 2.0 Battle Group Events Initial Panelccccoovreevvnnivncnenn. 31
BGLCSS 2.0 Overview Initial Panel ..o, 32
Symbolic Constants for Battle Groups and Ships........ccccccvecvrverirnenncces 35
Battle Group Data STrUuCTUIEScccoiuerveeiirenerir et ee e eeesssreesaeesseeaeeas 36
Battle Group Information Type Definition................... et 36
Settings Information Type Definition.......ccccooeeinerecieiinicninir e 37
Location Information Type Definitioncccoovivieiiniiiicnninnnniniencenaes 38
Capacity Information Type Definitionccccceveneeiiemnncniincniecieeeenens 38
Ship Information Type Definitionccccccoveneiiicriincnccinneesenceencnene 39
Location Information Type Definitioncccocoiveiiinoiiinincenieceeen. 39
F-76 Ship Fuel Information Type Definition..........cccccoveevnviiviieniernnee. 40
F-44 Aircraft Fuel Information Type Definitioncccocceecvvivnnrnnnnnnnn, 40
Ordnance Information Type Definitionccocoocivvieiinieinccnincce. 41
Battle Group Event Listccooceeieiioiiinrerennen s 41
Battle Group Event Type Definition........c.coccoeeineeieneniennciiencnencee 42
Battle Group Related Event and Battle Group Event List..............cc......... 43
Relation Type Definitionccoceeenirienieniinienie et 44
Battle Group Header List.........ccocooiininiiiciininiececseneecce e, 44
BGLCSS 2.0 Event List Panel ..o, 45
Battle Group Header Type Definitionccccoeveievininniincenienceee, 45
Battle Group Data and Function Members..........c...cocoeeveevieicni e, S5
Battle Group Array Data and Function Members..............c.oocoovevrrene . 55
Ship Class HIErarchyccooceecermeiimnricieicctec et 56
Ship Class Data and Function Members..........c..cocccveuininereecnnienreverinens 57
BGLCSS Event Class Hierarchy With Twelve Derived Classes 58

Logistics Event Class Hierarchy With Three Synthetic Derived Classes .61

vi

Figure 43,
Figure 44,
Figure 45,
Figure 46,
Figure 47,
Figure 48,
Figure 49,
Figure 50,
Figure 51,
Figure 52,
Figure 53,
Figure 54,
Figure 55,
Figure 56,
Figure 57,
Figure 58,
Figure 59,
Figure 60,
Figure 61,
Figure 62,
Figure 63,
Figure 64,
Figure 65,
Figure 66,
Figure 67,
Figure 68,
Figure 69,
Figure 70,
Figure 71,
Figure 72,
Figure 73,
Figure 74,
Figure 75,
Figure 76,
Figure 77,
Figure 78,
Figure 79,
Figure 80,
Figure 81,
Figure 82,
Figure 83,
Figure 84,
Figure 85,

BGEvent Class Data and Functioncccceoceviiiiiniinccnniece e, 62
BGLCSS Template List Classcccccooeviininiininieieceeeeie e 63
Symbolic Constants for Battle Groups and Ships........ccccccocenviiniininnnn. 64
BGLCSS 2.0 Set Up Battle Groups Initial Panel...............ccc.ccooooiie. 67
BGLCSS 2.0 New Battle Group Data Panel.............ccccoccooviiiiinniniannn. 67
BGLCSS 2.0 Battle Group Data Panelccccoccoeienvieniniinnicnnienieiiens 68
BGLCSS 2.0 Battle Group Ships Panel............c.occoiiiiiiiiiiiiireas 69
BGLCSS 2.0 Ship Logistics Panel ..o 69
BGLCSS 2.0 Ship F-76 Fuel Panelc.coccooiiiivniinninieiecieicie e, 70
BGLCSS 2.0 Ship F-44 Fuel Panelcccoooiviinnniienc e 71
BGLCSS 2.0 Select Ordnance Panelocooooiiiiiiiiiciieniececeeeee, 71
BGLCSS 2.0 Ordnance Load Panel..........ccccooiiinniinneneerecies 72
BGLCSS 2.0 Ordnance Data Panelcccccoceeeinvivnnivnnienieseecenen, 72
BGLCSS 2.0 Aircraft Load Panel............ccooooooiineinieeieceeeeee 73
BGLCSS 2.0 Aircraft Data Panelcccoceiiiinnniininininrenctesrecnees 73
BGLCSS 2.0 Battle Group Events Initial Panelccccccoccivinninnnnn.n. 74
BGLCSS 2.0 Battle Group Course and Speed Panel............ccccooceneniene. 75
BGLCSS 2.0 ASW Threat Level Panel ..o, 75
BGLCSS 2.0 AAW Threat Level Panel ..., 76
BGLCSS 2.0 Set Station Panel ...t 76
BGLCSS 2.0 Station Results Panelcccccooiviovennirnvrireiereierenvees 77
BGLCSS 2.0 Ship Course and Speed Panelccccooevevviinecinncnnenenn. 77
BGLCSS 2.0 Underway Replenishment Panel............ccccoociniinviinicininnn. 78
BGLCSS 2.0 Underway Replenishment Results Panelccocccoeeee 78
BGLCSS 2.0 Consol Panel.........cocooiemieniiciiienieccereinecneceiee v 79
BGLCSS 2.0 Consol Results Panelcccoooiiniiiiiiiiiiiiciinicienieeee 79
BGLCSS 2.0 Fuel Transfer Panel.........cccoooiiiiiiiiieneinnecciencene e 80
BGLCSS 2.0 Select Ordnance Panelccccooviiiiieninceniinecinnie e 80
BGLCSS 2.0 Ordnance Transfer Panelcoocooiiiiiiiiiiiiiinince, 81
BGLCSS 2.0 Raid Panel............ccoeiimniminiireniiieeneieecreeieeia e s 81
BGLCSS 2.0 Raid Ships Panel.......cccococevininininnninirieeieeeeeeeeee v 82
BGLCSS 2.0 Strike Panel.......ccooeeeiiniieiieececceeceie et 82
BGLCSS 2.0 Strike Ships Panel........ccccoccoiiinninveninenninecirecieeenen 83
BGLCSS 2.0 ASW Panel........ccooooovivieneinieneneieecer e 83
BGLCSS 2.0 ASW Ordnance Panelcc.ooeevieieniininenecneceeeeeeevenn 84
BGLCSS 2.0 Select BG Ship Panel........ccocoooiiiviininieieciceeeeeecrevees 84
BGLCSS 2.0 Select Ship Aircraft Panel..........cccooneveiiiiiecicecieeee, 85
BGLCSS 2.0 Select Summary Report Panelcoocooeiicinniiinnnnee.. 85
BGLCSS 2.0 Battle Group Shuttle Requirements Report Panel 86
BGLCSS 2.0 Commodity List Panelccccoe i 86
BGLCSS 2.0 BG Summary By Single Commodity Panel 87
BGLCSS 2.0 Battle Group Selection Message Panel............cccc.ccennn.. 87
BGLCSS 2.0 Ship Selection Message Panelc.ccoccoveviiiiccnineicnene, 88
vii

Figure 86,
Figure 87,
Figure 88,
Figure 89,
Figure 90,
Figure 91,
Figure 92,
Figure 93,
Figure 94,

BGLCSS 2.0 Insufficient Data Message Panel ..., 88
BGLCSS 2.0 Print Job Message Panelc..ococoviiiiiinnenincenencnee 88
BGLCSS 2.0 Incorrect DTG Format Message Panelcooeonennen. 89
BGLCSS 2.0 Incorrect Lat/Long Format Message Panel.......................... 89
BGLCSS 2.0 Close All Events Panels Message Panel.................c........... 89
BGLCSS 2.0 New BG Data Saved Message Panel ... 90
BGLCSS 2.0 Event List Panel...........occoooiiiiiiiiiieeeeiceeeee 90
BGLCSS 2.0 Sample Help Panel...........coooiiiiiiieeee 91
BGLCSS 2.0 Overview Initial Panelcccoooviiniiiicniniiinncecnn 91
viii

ACKNOWLEDGEMENTS

I would like to thank the students and faculty of the Computer Science and the
Operations Research Departments at the Naval Postgraduate School for their interest and
support throughout this work. In particular, I would like to thank Dr. C. Thomas Wu, Roger
Stemp, and CDR Gary Hughes for their guidance and enccuragement throughout this
project. It was former Computer Science Department Chairman Prof. Robert McGhee's
original suggestion to take on this project as part of my duties as a civilian computer
systems programmer at the Naval Postgraduate School Computer Science Department and

to pursue this research area as part of my thesis work.

I. INTRODUCTION

A. BACKGROUND OF BGLCSS

The Battle Group * ogistics Coordinator Support System (BGLCSS) is a logistics
simulation modeling tool to be used by battle group logistics coordinators to track, plan,
and predi.i F-76 ship fuel, F-44 aircraft fuel, and ordnance states for ships in a battle group.
Tr.- king these states involves applying various usage rates for each commodity and ship
type based on the passage of time and the planning and scheduling of battle group events
{SCHRADY 90]. Battle group events that can be planned include underway replenishment
and consol. Events that can be scheduled include ship stationing events, raids, strikes. anti-
submarine warfare (ASW) prosecutions, changes in ship or battle group course and speed,
fuel and ordnance transfers outside the battle group. and changes in ASW or anti-aircraft
warfare (AAW) threat level.

BGLCSS 1.0, written in Turbo Pascal 6.0 for a DOS environment, is the predecessor
to BGLCSS 2.0 and was originally developed by the Operations Research Department at
the Naval Postgraduate School. After the program was tested during Commander Second
Fleet, Fleet Exercise (C2F FLEETX 3-90) in June, 1990, and during C2F FLEETX 1/91-2/
91 in November, 1990, it was decided to move the program to the Navy Tactical Command
System Afloat (NTCS-A) Unified Build 2.0. This system consists of a set of applications
inciuding the Joint Operational Tactical System (JOTS II) [INRI 91b}.

JOTS H is an automated Command, Control, and Communications Display and
Decision System designcd to meet the tactical situation assessment needs of battle group/
force commanders, surface warfare commanders, ship commanding officers. and shore
command centers [INRI 92¢]. JOTS II has digital interfaces with a variety of military
communications systems and other shipboard computer systems. It processes tactical
information received from other systems and automatically correlates this data with its
existing tactical contact or Track Data Base Manager (TDBM). This tactical database is

then used to generate computer graphics images at color Sun workstations [INRI 92a].

The workstations operate using a modified version of the standard commercial UNIX

operating system SunOS 4.1.1. Applications are written in either C or Ada and use the X
Window Manager and Government Off The Shelf Software (GOTS) programming tools.
Among these GOTS tools, the Wizard Tool Kit, is a Motif-based C function library used
for building graphical user interfaces [INRI 92d}.

BGLCSS 2.0, a tactical decision aid within the NTCS-A Unified Build System
architecture, is shown in Figure 1. It is written in C using a structured programming
paradigm and, instead of using the Wizard Tool Kit for building the graphical user

interface, uses Transportable Applications Environment Plus (TAE Plus), a User Interface

Management System (UIMS).

Other JOTS 11 BGLCSS 2.0
Applications and
Tactical Decision Aids

TAE Plus 5.2 Beta UIMS

Databases 1\‘}/01(7;?{8"

Motif 1.1.4

Xlib

X11 Window Manager, X11RS

GOTS 2.0

SunOS 4.1.1

NTCS-A Unified Build 2.0

Figure 1: BGLCSS 2.0 Within the NTCS-A System Architecture

TAE Plus is a visual graphical user interface builder developed by the National

Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) and

3]

distributed by NASA’s Computer Software Management and Information center
(COSMICQ), a non-profit unit of the University of Georgia. It supports rapid building,
tailoring, and management of graphic-oriented user interfaces. The main features of TAE
Plus include: 1) the Work Bench, an interactive tool that supports the design and layout of
an application’s interface; 2) the Window Programming Tools (Wpt) Package, a set of
application callable subroutines used to control a user interface during execution time; and
3) the Code Generator, which automatically generates code for the interface in C, C++,
Ada, or TCL (TAE Command Language) [NASA 91a].

This thesis deals with the design, impiementation, maintenance, and extension issues
of structured programming versus object-oriented programming for real-world applications

such as the BGLCSS tactical decision aid within the NTCS-A Unified Build.

B. OBJECTIVES

This thesis was embarked upon to determine whether there are significant differences
between the structured and the object-oriented implementation of the same application. The
object-oriented paradigm promises, among other things, a more reliable end product, easier
maintenance, and easier extension. We seek to demonstrate the benefits of using an object-
oriented approach for a real-world application such as BGLCS and to argue that an object-
oriented approach is particularly suited for large, multi-component systems such as the

applications within the NTCS-A Unified Build.

C. SCOPE

The Navy Space and Warfare Command (SPAW AR) project specifications demanded
that BGLCSS 2.0 be written in C using a structured programming paradigm. While much
of this project has been devoted to developing robust algorithms to realistically simulate the
logistics events in C, this thesis critiques the use of the structured programming paradigm,
especially in large systems.

The decision to use a visual graphical user interface UIMS such as TAE Plus instead

of the Wizard Tool Kit, a set of low-level Motif functions, significantly decreased overall

—

development time. Furthermore, we propose that by using TAE Plus with C++, NTCS-A

applications could benefit significantly not only from improved software development
time, but also from improved product reliability, improved program maintenance, and
easier program extension. Due in large part to the breadth of the BGLCSS application, only
a subset of the structured paradigm implementation has been re-designed using an object-

oriented paradigm in C++.

D. ORGANIZATION

Chapter 11 of this thesis provides an overview of the structured programming and the
object-oriented paradigms. Chapter III presents an abbreviated presentation cf the
BGLCSS 2.0 graphical user interface design using TAE Plus. Chapter IV covers and
analyzes the structured design and implementation of the structured programming version
of BGLCSS in C. Chapter V covers and analyzes the object-oriented programming design
of BGLCSS in C++. Chapter VI summarizes the work accomplished and provides
recommendations for program maintenance and extension. The appendices contain the

graphical user interface panels, the C and C++ program listings.

—%

II. BACKGROUND OF THE PROGRAMMING PARADIGMS

A. GENERAL

. Discussion about the merits of object-oriented programming have inundated technical

journals over the past few years and has appeared even in non-technical journals. In a recent
article in Business Week the question was asked, “Will object-oriented programming
transform the computer industry?” The article goes on to describe in layman’s terms the
differences between “the old way”, i.e. structured programming, and “the new way”, i.e.
object-oriented programming, of designing and writing programs. Structured programming
was characterized by three terms: confusion, hand crafting, and breakdowns. In contrast,
object-oriented programming was described by three counterpart terms: understanding,
reusing, and repairing [HAMMONDS 91].

Not all supporters of the object-oriented paradigm agree that there is a sharp boundary
between “the old way” and “the new way.” Rather, object-oriented principles can be said
to have evolved from the lessons learned from years of structured programming just as
structured programming principles have evolved from the lessons learned from years of
machine and assembly language programming. Holub, for example, cautions against
looking for the “major shift in paradigm” promised by some object-oriented paradigm
enthusiasts. In his book about programming with objects in C and C++, he introduces
object-oriented principles by using code written in C within a structural programming
paradigm, followed by code written in C within an object-oriented paradigm, and finally
the object-oriented C++ version. He believes that object-oriented programming is merely a
collection of useful programming techniques that can be applied to any computer language.
An “object-oriented language” provides a few built-in mechanisms for operations that can

. be performed explicitly in a non-OOP language. Holub even argues that a program can be
written in C in an object-oriented way just as easily as a program written in C++ and
provides ample examples of code written in C that mimic some object-oriented principles

(HOLUB 92]. It is not enough, however, that a program be written in an object-oriented

way in C as in C++. Much of this code is very difficult for C and C++ programmers alike
to understand even though they are accustomed to reading C code within a structured
programming paradigm, the paradigm for which it was designed. Using a structured
programming language to perform object-oriented techniques is a less than optimal fit of
resources and is not the best application of the object-oriented paradigm.

It can even be argued that C++, while designed to support object-criented
programming, may not be the best language for object-oriented programming. Shiffman
[SHIFFMAN 92] maintains that the pure object-oriented programming language Smalltalk
is far easier to use than C++. With Smalltalk, it is possible to write more comprehensible,
more maintainable programs and class reuse between applications is far more prevalent in
contrast to C++. Given the SPAWAR project specifications to use C to implement
BGLCSS 2.0, the advantages of using a pure object-oriented programming language such
as Smalltalk are outweighed by the benefits of using C++. A move to C++, because it is a
superset of C, provides a more evolutionary transition to an object-oriented paradigm than

moving from C to an entirely different language with its own syntax and conventions.

B. GOALS OF SOFTWARE DEVELOPMENT

To distinguish between these two paradigms and determine whether or not the object-
oriented programming paradigm is better than the structured programming paradigm, we
need to identify specific goals of good software development. Meyer [MEYER 88§] cites
several “quality factors” of software development: correctness, robustness, extendibility,
and reusability. Correctness is defined as the ability of software to exactly perform its tasks,
as defined by the requirements and specifications. Robustness refers to the ability of
software to function even in unintended conditions. Extendibility is a subjective measure
of the ease with which a program can be changed to conform to a change in program
specifications. For instance, a simple design is easier to adapt to specification changes than
a complex one. Furthermore, the more autonomous or decentralized the program modules,

the higher the probability that a simple change will affect just one module rather than

trigger off a chain of reaction of changes over the whole system. Finally, reusability is the
ability of software to be reused, in whole or part, for new applications and thereby
significantly reduce development costs. With these software goals in mind, we can now

discuss the extent to which each paradigm addresses these goals.

C. STRUCTURED PROGRAMMING PARADIGM

Machine and assembly languages reflect the architecture of the machines on which
they operate. Like these machines, they are composed of data, arithmetic expressions,
assignments to memory locations, and control flow. Among the problems associated with
using these languages to develop software are the difficulties in debugging problematic
code and the high cost of this tedious process. These problems were part of the impetus
behind the development of higher-level languages such as Fortran and later, C. The C
programming language has been described as a higher-level language that “rebuilds” an
underlying machine to make it more convenient for programming [SETHI 90]. In general,
the development of programming languages from the first generation languages to the
current generation of languages has been a continual search for improved correctness,
robustness, extendibility, and reusability. Five characteristics of the structural
programming paradigm are of interest to our discussion: separate code and data, built-in
data types, top-down functional decomposition and function-based design, distributed

functionality, and limited code reuse.

1. Separate Code and Data

Procedures and functions operate on data and are defined and coded separate from
each other (see Figure 2). This is particularly apparent in pre-ANSI C programs (see
Appendix A). The data structures and simple data types are usually defined in header files,
i.e. files with a *.h” at the end of the file name. The functions that operate on the data are
usually defined in separate files with a *“.c” at the end of the file name. When a driver
program uses these functions and data, it is necessary to indicate to the C compiler

preprocessor to put a copy of the header file in the driver program file when compilation

occurs. Separately, the names of functions found outside of the main program are declared
to be external to the file. The names of procedures or functions and global data must be
unique so that they do not conflict with one another. There are two problems with the
separation of these program components. First, procedures and functions can be called and
passed the wrong data. Second, by unintentionally accessing data from procedures and
functions, changes to data become uncontrollable in large systems where no one knows
where a particular data item is being changed or why. These two weaknesses associated

with the separation of code and data frequently reduces program correctness and

robustness.
Procedure
Procedure Procedure Procedure
Procedure Procedure Procedure
Procedure
Procedure Procedure
Data Data

Figure 2: Structural Program Procedures Separate From Data

2. Built-In Data Types
While most languages implement integers and floating point numbers as built-in
types, most do not implement complex numbers, calculations with physical units (barrels,

tons, etc.), date time groups, and latitudes/longitudes. If these types are needed, they cannot

-—

be added easily. There are two problems with being limited to built-in data types. First,
libraries become long lists of specialized functions rather than general functions handling
a variety of types. The GOTS library is a case in point [INRI 92b]. It contains numerous

functions that perform conversions from one built-in data type to another as shown in Table

1. This library is a proliferation of very specific functions that convert one built-in type

representation of a real-world entity to another built-in type representation.

Table 1: A SAMPLE OF GOTS DATA CONVERSION ROUTINES

Function Description Arguments Return Type
dig date time group string to inte- | char tmef} int
ger
dig_to_a integer value of time to date int tme char*
time group string
lat_to_A double value of latitude to fati- | double lat char*
tude string
fl_to_A double values of latitude and double lat, double Ing char*
longitude to latitude/longi-
tude string

Since each GOTS library function requires the data type of the function
arguments to be specified and only built-in types are allowed, it is difficult to write more
general and therefore flexible library functions. This undermines reusability of the library
functions. Second, it is possible to perform meaningless operations on the real world data
being modelled. As an example, a date time group is often represented as an integer and yet
it is still possible to add two date time groups together. This contributes to a poor

representation of the real-world entity being modeled in software.

3. Top-Down Functional Decomposition and Function-Based Design

The top-down functional approach to program design is based on the premise that

software development should be an incremental refinement of the system’s abstract

function rather than the data it represents in the real world. This process has often been
described as a tree where the nodes of the tree represent elements in the decomposition and
the branch nodes represent a refinement of its parent node. The primary benefits of the top-
down functional approach is that it is logical and promotes organization and discipline.
However, it fails to account for the evolutionary nature of software system development.
Additionally, by focusing on the function rather than the data, a top-down approach does
little to promote reusability. During the life of the system, it is the data and not the functions
that are the most stable part of a system. The trade-off with this top-down approach is that
it is fairly easy to design and develop an initial structure for the short term. However, in the
long-run, as the system changes, it will be necessary to constantly redesign the system
instead of merely extending the system. By focusing on the data instead of the immediate
purpose of the system, the long-term benefits of reusability and extendibility can be
achieved [MEYER 88].

Whether or not top-down design is used, structural programs are primarily
function-based. Bottom-up design involves finding a set or sets of fundamental operations
that are used throughout the program and writing procedures or functions to implement
them. A top-down approach is then often used to connect the routines. In either a top-down

or bottom-up approach, the emphasis is on the data upon which the program operates.

4. Distributed Functionality

Procedures and functions tend to be tightly coupled using this paradigm. That is,
procedures and functions are distributed throughout a program and tend to know too much
about other procedures and functions. Changes to one function may force changes in other
functions. If, for instance, a new ship type such as the USS Arleigh Burke class needs to be
incorporated into a program, all of the functions regarding ship type will need to be
modified. Since these functions are hard-coded into the structure of a program, program

extension becomes much more difficult to perform.

10

5. Limited Code Reuse

The structured paradigm inherently leads to repetition in programming. By using
built-in data types and function-based design, code reuse can be achieved only by the low
level method of cutting and pasting code from one program, and explicitly modifying it for
its new data type (see Appendix A, InsertBGEvent, InsertBGHeader, and InsertBGHeader
functions). Conventional languages require general purpose libraries which are limited to
a long list of special purpose sort routines for sorting arrays of integers, floats, etc., instead

of a generic sort function that is data-type independent.

D. OBJECT-ORIENTED PROGRAMMING PARADIGM

The object-oriented programming paradigm is a software design and development
model incorporating several techniques explicitly aimed at code reuse, improved program
reliability, and easier software modification, extension, and maintenance. The object-
oriented programming paradigm is particularly well suited for the development of large
sophisticated software systems that inherently evolve over time. Characteristics associated
with the object-oriented paradigm include encapsulation, data abstraction, inheritance,
polymorphism, persistence, delegation, and generacity. The first four characteristics are
supported by the 2.1 version of C++, and, since C++ was the language chosen to design a
subset of BGLCSS 2.0, this thesis will concentrate only on encapsulation, data abstraction,
polymorphism, and inheritance issues. Generacity, a characteristic added to C++ version
3.0 and also known as parametric polymorphism, will be briefly mentioned. Although
encapsulation and data abstraction are used within other paradigms, it will be shown that
they are far more powerful within an object-oriented paradigm than within a structured
programming paradigm.

How does the object-oriented paradigm lead to a more reliable end product, and easier
software modification, extension, and maintenance? In general. the process begins by
producing a more realistic representation of the real world entities involved. For example,

by combining ship functions and ship data into a ship object, the real world ship entity is

I

e

more coherently represented in code. An object is defined in terms of the data it

encapsulates and the operations on the data that are allowed by the set of interface functions

(see Figure 3).

[‘Name
["HullNumber
LF76Capac1ty

L Other Data...
Private members
Public functions

GetName

e e L

GetHullNumber

ComsumeF76Fuel

Other Functions.....

Stip Object

Figure 3: Object Encapsulating Related Functions and Data

A real world ship has attributes such as its name, hull number, F-76 fuel capacity, etc.,
and can perform various functions such as stationing, changing course and speed, etc. Ship
attributes and the functions it can perform are said to be encapsulated within a ship object.
The operations that can be performed on the encapsulated data are also known as the
object’s interface functions and the implementation of these functions is internal to the
object. For example, a ship object frequently changes its course and speed which affects its
internal fuel consumption and levels. These are attributes internal to the definition of a ship
object.

Encapsulation allows for information hiding and the object-oriented paradigm’s
method of information hiding goes beyond local variables. Information hiding protects data

from uncontrolled access and change. Variables that are local to a procedure or function,

12

T

for instance, can only be changed within the function or procedure. In this way, they are

protected from access from other functions and procedures. Global variables, on the other

hand, are vulnerable to unintended change or access by the functions and procedures in
* their scope.

Objects, in C++, can have data or function members which are declared to be either

public, protected, or private. These terms refer to the level of access to these members. For
instance, all of a ship’s data members can be declared to be private to the rest of the
program. In this case, only a ship’s member function can access private data to that object.
Instead of passing variables to functions, it is the variables that are receiving messages in
the form of functions. The variables themselves are designed to control which functions can

modify which varables in the program.

1. Data Hiding and Data Abstraction

Data hiding is a practice whereby the programmer restricts him or herself to the
public interface of a type for purposes of accessing or changing the value of an object of
that type. The advantage of data hiding is that it encourages the programmer to protect data
from unintended access and modification.

Data abstraction is defined as the activity of creating a model or concept of a real-
world phenomenon at such a level that inessential details can be ignored. It is data typing
combined with data hiding. In C++, the programmer creates user-defined types using the
class mechanism. Abstract data types in C++ are not built-in data types such as integers or
floating point numbers but are treated as though they were built-in. The term, user-defined
data type, is a more appropriate term. C++ is an extensible language in that the language
can be extended to include user-defined data types.

There are two benefits to data abstraction. First, it is easier to design and
implement a system that is built out of entities that incorporate data hiding.The focus can
be on the properties of the procedural interface of the various entities. These properties are

> typically far simpler and more abstract than the algorithms that implement them. Second,

13

the decoupling of the interface from the implementation allows program entities to be
reimplemented without having to modify any other part of the program. C++’s most

important abstract data type is the cl/ass.

a. Class

A class is an internal template. In C++, it is the extension of a C struct. A
struct (in other programming languages, it is known as a record) is a group of several
different types of data in a single entity. An object is actually an instance of a class that
occupies memory. For example, a class could be used to represent a ship. Although the
actual data structure of a class is basically a struct with functions associated with it, it is
considered as a single entity. A definition of a class in a C++ program conceptually
introduces a new type into the language. The most significant feature of a class is that
objects of the class can be treated the same way objects of a fundamental type such as

integer [HOLUB 92].

b. Member Functions
A C++ class differs from a struct in C in that it contains member functions as
well as data. The member function can be declared inside the class body, but are usually
declared in a prototype form in the class definition and are defined later on. The need for
member functions is related to data hiding mentioned earlier. Member functions can access
private member data values. Member functions are one way to work with private data.
Putting the member functions and member data together makes the data active and more

cohesive.

¢. C++ Constructors and Destructors
C++ provides constructor and destructor functions and almost every class
contains these special member functions. They initialize and clean up class objects.
Constructors provide a way to ensure that objects are defined with initial values without

violating the constraints of data hiding. Destructors are important to free up object memory

that was allocated by the constructor. A class can have several different constructors to
allow objects to be able to be initialized in different ways with different argument. One of
the greatest advantages of constructors and destructors is that they simplify software
maintenance. If, for instance, the specification for the format for ship hull numbers were to
be changed, only the class member data and functions would be changed. In structured
programmir 2, a “simple” change such as this one, can change hundreds or even thousands

of lines of code that are closely tied to the format of the data [PERRY 92].

2. Inheritance and Class Relationships

Inheritance is used to describe special relationships between classes. It is
generally used to achieve two goals: 1) It can be used as an abstraction tool to organize
classes into hierarchies of specialization; and 2) It can be used as a code reuse mechanism
to create a new class that bears strong resemblance to an existing class with added
refinements.

In the first case, inheritance reflects a semantic relationship between classes
where one class’s member functions are used to refine some attributes of an existing base
class while inheriting the remaining attributes. This form of inheritance could also be a
mechanism to embody the strong similarities between two existing abstractions such that
an object of a base class can be interchanged by an object of a derived class. The ability of
a program to handle many forms of a class as though they were the same. an example of
polymorphism, which is further discussed in the next section, is an important abstraction
tool that shields the programmer from the implementation details of derived classes.

In the second case, inheritance is used to share code. While a class may not exhibit
all the properties of its base class, it may be similar enough that the reuse gains make
inheritance worthwhile. For example, although an ASW threat level event and a ra‘q event
are not interchangeable, they may have enough code in common that a common evolution

through inheritance could lead to code sharing.

15

Coplien identifies four specific relationships between classes that affect class
design and class hierarchy design: the is a, has a, uses a, and creates a relationships. The
is a relationship is one where specialization or subtyping is involved. A destroyeris a type
of ship and therefore, a destroyer class could be derived from a ship class. Another
relationship between classes is called composition or a has a relationship. For example, a
ship has a F-76 fuel state. Composition is implemented by either designating one class as
a member of another or by one class referencing another object. A uses a relationship
exists when a member function of a class takes an instance of scmie other class and uses it
as a parameter. A uses a relationship exists when one class member functions calls on the
services of some other class. A creates a relationship is similar to a uses a relationship but
it is between an object and a class instead of between objects. In other words, an instance
of one class, during the execution of one of its member functions, makes a request of some
other class to create an instance of an object of the class. The identification of these
relationships significantly influences the details of class design and class hierarchy design
[COPLIEN 92].

Class hierarchy design can take on two different forms: single or multiple
inheritance. Single inheritance allows the creation of a new class by using an existing class
as a model. In other words, it is possible to inherit one class from another, creating new
classes from existing ones. The original, or base class, shares its code with the new class.
Code sharing can make programming much easier because less code needs to be rewritten.
In some cases, new features need only be added to the new, derived classes. Multiple
inheritance, by contrast, is the creation of a new class from multiple existing classes. C++

implements both single and multiple inheritance.

3. Polymorphism

When writing C++ programs. the same function name can be used with different

types of objects. Polymorphism means “many different forms.” Perry asserts that

16

polymorphism is one reason why C++ programs can be written faster than C programs. For
instance, in C++, various objects can be printed out with the same function name:

Ship.print(); // Prints the Ship object

BGEvent.print(); // Prints the BGEvent object
By using the same function name for different objects to perform the same
operation such as printing, the “clutter” is removed from the code. There is no need to name

the functions specific to the data type being manipulated as shown in the following C code:
PrintShip(); /*Prints a Ship data structure*/

PrintBGEvent (); /*P.ints a BGEvent data structure*/

On the surface, the ability to use the same function name prirt() for several
different objects merely seems to be a syntactic advantage of removing “clutter.” However,
what is really happening is that the same message or function name causes different
responses depending on which object is receiving the message. One benefit of
polymorphism is that it models the real world object better than the structured paradigm by
using one command to be issued to different objects.

With polymorphism, each time a new object is added to a program, no changes to
the existing code are required. All that is required is that a new function is added to the
object. Therefore, polymorphism facilitates program extension by eliminating the need to
alter the existing program code.

Parametric polymorphism, a mechanism supported by C++ 3.0 as templates, has
been argued to be the mechanism allowing for the highest degree of code reuse of all of the
object-oriented mechanisms. Templates in C++ are similar to generic packages in Ada.
Templates define families of types and functions. They are an alternitive to inheritance
hierarchies constructed for code reuse. For example, a template (.- an be designed to
implement a doubly linked list and can be used for any type. Thi- ki:.© 1 rcuse is based on
the reuse of source code rather than object code. By contrast, much ot the functionality of
a base class can be reused by a derived class at the object code level. Template classes can

be used to build generic class libraries.

17

—;

E. COMPARISON OF THE PARADIGMS

In comparing the two paradigms, it is useful to point out each paradigm’s strengths
and weaknesses in order to determine which paradigm contributes more to the goals of
software engineering as described by Meyer, i.e. correctness, robustness, extendibility, and
reusability.

The strengths of the structured programming paradigm are limited. First, in
comparison to developing code in an ad hoc manner, structured programming and the top-
down functional decomposition approach provides organization to complex system
development. Fortran, assembly language, and machine code programming pale in
comparison to code written using a structured programming paradigm.

The weaknesses of this paradigm, however, are numerous. First, by separating the
code from the data, there is the possibility of passing the wrong data to the code and data
can be accessed and changed in uncontrollable ways. This reduces the correctness and the
robustness of a program. Second, most languages associated with the structured
programming paradigm are limited to built-in data types with the exception of Ada and
Modula-2. In general, the ability to create a general library of functions results in either a
proliferation of library functions or the lack of them. This weakness affects reusability.
Also, meaningless operations such as addition can be performed on entities such as a date
time group. Third, the down side of a top-down functional decomposition approach is that
it inherently leads to requiring repeated redesigns when program extensions are required.
Fourth, with functionality distributed throughout a program, changes to one function may
force changes to other functions. This compromises program extension efforts as well as
program correctness and robustness.

The object-oriented programming paradigm provides more techniques to achieve the
software goals of correctness, robustness, extendibility, and reusability than in the
structured programming paradigm. It can be said that some elements of the structured

programming paradigm have been incorporated within the object-oriented programming

18

T —

paradigm. An obvious example is the emphasis on an organized, top-down, high-level

approach to design.

Although data abstraction and data hiding are supported in the structured
programming paradigm, they are more powerful within the object-oriented paradigm. The
primary reason for this stems from the combination of data and functions within an object
of a class. The object of a class provides a more realistic representation of the real-world
entity and, when used within a program, limits the degree to which a change in an object’s
data or functions affects other parts of the program and forces a cascade of changes.
Polymorphism, a technique used when calling functions of the same name for objects of
different classes, makes program code easier to read. Template classes, a C++ feature to
create generic classes, allows the building of truly general class libraries which is not

possible with a structured programming paradigm.

III. BGLCSS 2.0 GRAPHICAL USER INTERFACE DESIGN

A. TAE PLUS OVERVIEW

The TAE Plus version 5.2 beta release was developed under SunOS 4.1.1 on a
SPARCstation 2. Components used to develop TAE Plus include Release 4 of the X
Window System (X11R4), Open Software Foundation (OSF) OSF/Motif 1.1.4, InterViews
2.6 from Stanford University; and GNU g++ version i.40.3. As far as C++ code generation
is concerned, the TAE Plus installation source code tree was subsequently rebuilt to link
statically with SunC++ 2.1. While the above components constitute the only officially
supported platform for this beta release, TAE Plus version 5.2 beta was also tested with
OSF/Motif 1.1.3. The TAE Plus installation guide urges users to upgrade to OSF/Motif
1.1.4 (or 1.1.3) as soon as possible to take advantage of the many problems fixed by OSF.
However, the release of TAE Plus used for this thesis is expected to work with versions
1.1.1 and 1.1.2 of OSF/Motif as well, although behavior may vary [NASA 92b].

TAE Plus is a graphical user interface builder used at three different levels. First, it is
used at the WorkBench level as shown in Figure 4 to visually design panels (windows) and

items (buttons, selection lists, labels etc.).

Edit Arrange Auxiliary

Figure 4: TAE Plus WorkBench Panel

20

Also at this level, panels and items are named, defined, and various constraints and
details such as whether or not the item is an “event-generating” one, are added. The term

“event-generating” should not be confused with the battle group events simulated in

- BGLCSS 2.0. An item is event-generating if it causes another panel to be displayed or if a
call to a function is made. At this point, all of the information created for an interface is
contained in a resource file. The format for the name of a resource file is the application

name appended by a . res suffix (see Figure 5).

Figure 5: TAE Plus WorkBench Resource File Selection Panel

Second, TAE Plus generates code for all of the event-generating items in the
application panels. While an in-depth discussion of event-driven programming is beyond

the scope of this thesis, it is important to understand the difference between an event-

21

generating item and a non-event-generating item. An event-generating item is an item such
as a button or a selection list that, when pushed or when an item is selected, another
interface activity takes place. A non event-generating item is an item such as a text keyin
item where users enter data.

Third, at the source code level, it is the application programmer’s task to integrate the
calls to application library functions with the code generated by TAE Plus. When this
project began, TAE Plus Version 5.1 generated only Ada, C, and TAE Plus Command
Language code. In the meantime, a beta version of TAE Plus was released providing code
generation in C++. Therefore, it was possible to build a graphical user interface and
generate C code for the structured programming version of BGLCSS 2.0 as well as C++
code for the object-oriented programming version of a subset of BGLCSS 2.0. The
integration at the source code level will be discussed in chapters IV and V with respect to

each of the implementations: in C and in C++.

B. TAE PLUS WORKBENCH
At the WorkBench level, the first step in creating an application is to create an initial
panel and to define the panel’s specifications such as the panel for the battle group course

and speed event as shown in Figure 6.

Figure 6: TAE Plus Panel Specification Panel

22

By pressing the Edit Panel Details button on the panel depicted in the last figure, the
Panel Details Panel is displayed (see Figure 7). It is used to define the panel’s help file and
icon details. Applications built with TAE Plus require an initial panel(s) to be designated
as in the BGEvents module of BGLCSS 2.0 (see Figure 8).

v

NSRS IEn0n0
T
ST

2

&

e

Figure 8: TAE Plus Specify Initial Panels Panel

o
>

Panels can be connected to event-generating buttons or calls to application functions

using the Connection Specification Panel as shown in Figure 9.

Figure 9: TAE Plus Connection Specification Panel

Once a panel is created, items can be defined and added to the panel using the Item
Specification Panel in depicted in Figure 10. When an item is defined, one of its most
important attributes is its data type. Based on data type, TAE Plus provides general type
checking on user-entered data. For example, if an item is defined as a real number, and the
user enters anything else, i.e. an integer or a string, an error message is displayed by TAE
Plus to the user indicating that the data type is invalid and restored the previous entry. This
general data type checking provided by TAE Plus eliminates the need to write error

handling routines of this nature by the applications programmer.

24

Figure 10: TAE Plus Item Specification Panel

User entered data can be further restricted by setting constraints as show in Figure 11.
For instance, a constraint on the range of valid values can be specified on a text keyin real
data type item. A course heading, in the real world, has a range between 0.0 and 359.9.
When real value is entered that falls outside of the specified range, an error message is

displayed to the user and the previous value is restored to the text keyin interface item.

Figure 11: TAE Plus Item Constraints Panel

TAE Plus also makes the implementation of a help button easy to define. When a
button is defined, the specific details offered to the designer are displayed in the panel

shown in Figure 12.

Figure 12: TAE Plus Push Button Presentation Panel

Furthermore, application specific error messages can be defined (see Figure 13). The

message item provides a template for making information, warning, and error messages.

26

Figure 13: TAE Plus Message Presentation Panel

C. BGLCSS 2.0 GUI DESIGN

BGLCSS 2.0 consists of three program modules: Setup, Events, and Overview. When
integrated into the NTCS-A Unified Build, BGLCSS 2.0 is one of several JOTS I Tactical
Decision Aids (TDAs) as shown in Figure 14,

[JOTSII Menu Bar Uptions... TDAs |

BOLUSS 1 Setup
Events

QOverview

Figure 14: JOTS II Menu Tree

Each one of these modules was built using three separate TAE Plus application and in
accordance with the User Interface Specifications for Navy Command and Control Systems
[FERNANDES 92]. A script is used to call individual JOTS II applications. The design

decision to separate BGLCSS 2.0 into three modules was based on the way simulation

applications are used. In order to simulate logistics events, it is a prerequisite to define some
settings and create the entities with which to work. By dividing BGLCSS 2.0 into Set Up,

Events, and Overview, the user is directed to the three main services of the application.

Once set up is performed, events can be simulated. In addition, although help buttons are
present on every panel and provide clear instructions to the user about using the items on a
specific panel, it was decided to include an Overview module where a *“‘Help on Help” on-
line user’s manual could be provided.

Each module’s C code was generated by TAE Plus based on the initial panel
uesignated, connections between items and panels, and items designated as event-

generating. A partial depiction of the files generated for the BGSetup module (see Figure

15).

BGSetup.c pan_BGSetUpBGs.h bg.h
* pan_NewBG.h

|
pan_BGSetUpBGs.c_
BGSetup_init_pan.c | pan NewBG.c |g bg.c

pan_BGData.h
1
> pan_BGData.c)
BGSetup_creat_init.c >
pan_DelBG.h
I
rbl pan_DelBG.c l
taeconf.inp Fpan_CloseAll.h —l
wptinc.inp| I
symtab.inc pan_CloseAll.c r’l_
lobal.h
& Legend: .
——— include file
—— function call

Figure 15: TAE Plus Files Generated and Function Invocation for Setup Module

28

The BGSetup.c calls two functions, BGSetup_Initialize_ ALL_Panels () found in
BGSetup_init_pan.c and BGSetup_Create_Initial_Panels() found in
BGSetup_creat_init.c. The first function reads the resource file created by the
TAE Work Bench and creates and initializes the TAE objects used for each panel in the
appiication. The second function merely calls the specific function to create the initial
panel, in this case, SetUpBGs_Create_Panel() found in pan_SetUpBGs.c.

After calling these two functions,the main event handling loop runs the entire program
until the SET_APPLICATION_DONE flag is set. At this time, the program terminates.
During the main event loop, the functions found in the panels NewBG, BGData, DelBG,
and CloseAll are called when event generating operations are performed by the user.

In addition to the TAE Plus code generated files, TAE Plus provides two basic sets of
library functions for applications programmers: the Windows Programming Tools package
(Wpt) and the Variable Manipulation (Vm) package.

The Wpt package contains C functions that provide programs with graphic, window-
based user interfaces. The purpose of these functions is to deliver user inputs to an
application program. Based on information provided in the resource file, Wpt determines
the desired form of user interaction and creates the appropriate displays on the screen.
When the user enters or selects values for the program inputs, Wpt functions make the
values or selection available to the program.

The Vm package consists of standard TAE data structures called Vm objects. When
an application program begins, it reads the panel and item information contained in the
resource file into these Vm objects. Wpt uses two Vm objects to acquire each set of inputs.
The “target” Vm object describes the inputs to be acquired. The “view” object describes the
presentation of the target parameters on the screen. After the user interface information is
read into the Vm objects, the program passes pointers to the objects as arguments to Wpt
functions.

The generation of C++ files is similar to that of the C files. Table 2 provides a sample

of the files produced by TAE Plus in C++. These files are found in Appendix C.

29

Regardless of the programming language used, the following figures are the initial

panels for each of the three program modules Set Up, Events, and Overview. For a more

complete presentation of the graphical user interface, see Appendix A.

Table 2: SAMPLE OF BGLCSS 2.0 SETUP C++ GENERATED FILES

File

Description

BGSetup.cc

Contains main procedure.

BGSetup.h

Encapsulates the resource file.

BGSetup_init_pan.cc

Initializes all panels.

BGSetup_creat_init.
cc

Creates the initial panel set.

pan_BGSetupBGs.h

Contains the panel’s class definition and instance parameter declara-
tions.

pan_BGSetupBGs.cc

Contains the panel’s class methods.

item_BGSetupBGs.h

Class definitions of ali items in the panel and instance parameters
declarations.

Imakefile

Machine-independent template for generating the Makefile for the
application.

Figure 16: BGLCSS 2.0 Set Up Battle Groups Initial Panel

30

[aue([eny] siuaag dnoin Jpieq o

T SSO1Hd

:L1 am31§

Figure 18: BGLCSS 2.0 Overview Initial Panel

32

IV. BGLCSS 2.0 STRUCTURED DESIGN

A. GENERAL

This chapter describes the design decisions and implementation issues of BGLCSS
2.0 using a structured programming paradigm. The following chapter will discuss the
design decisions and implementation issues of a part of BGLCSS 2.0 using an object-
oriented programming paradigm.

BGLCSS 1.0 was written in Turbo Pascal to run in a DOS operating system on an
IBM PC-AT compatible microcomputer [SCHRADY 91]. According to the proposal for
research statement of work,”Moving BGLCSS into JOTS involves much more than code
conversion. The JOTS II environment includes communications interfaces and a variety of
services which must be utilized to reduce the labor intensiveness of the current version of
BGLCSS. The data, planning factors, and algorithms in the current version of BGLCSS
will carry-over, but the program must be completely restructured.”

In other words, by moving BGLCSS 1.0 into the JOTS 1I environment, the program
would require restructuring solely in order to take advantage of the variety of JOTS II
services and to reduce user data entry activity. Among other things, it was assumed that the
algorithms would carry over. In fact, however, after extensive examination of the original
Pascal code, this was found not to be the case.

The algorithms in question, as far as the code is concerned, represent the battle groups,
ships, and events. It was thought that the original logic of the program, could be easily
translated to another programming language, a new interface attached. and JOTS services
incorporated. It was not feasible to translate or carry over any of the original Pascal code
for three reasons.

First, the original program was developed in a rapid, iterative, and ad hoc manner and
the Pascal code is a classic example of one of the weaknesses of developing software
without a high-level design. The code was largely undocumented and no high-level

descriptions of algorithms, function definitions, nor variable definitions were provided.

33

Without any of this program documentation, the original BGLCSS code was virtually
untranslatable to C.

Second, the data structures used to represent the simulated events were ill-suited for
simulation purposes and introduced unnecessary inefficiencies and redundancies into the
program.

Finally, the organization and layout of the user interface was complicated and difficult
to use. For these reasons, BGLCSS 2.0 was completely restructured to take advantage of
the variety of JOTS I services and, furthermore, to redesign and redevelop the algorithms,
data structures, and user interface.

The following sections present the structured design and implementation of BGLCSS
2.0. The components of the design are: the program specifications; symbolic constants;
data structures for battle groups, ships, and events; library design of battle group, ship, and

event functions; graphical user interface design; and application integration issues.

B. PROGRAM SPECIFICATIONS

The goal was to produce a program that simulates the occurrence of a number of
logistics events and calculates the usage of fuels and ordnance based on specific planning
factors. Program specifications were abstracted from the user’s manual for BGLCSS 1.0

[SCHRADY 91].

C. SYMBOLIC CGNSTANTS

In BGLCSS 1.0, symbolic constants were scattered throughout the multiple file
program. Consequently, this added an unnecessary layer of confusion when trying to
understand where the constants were defined. As a result, all of the symbolic constants in
BGLCSS 2.0 are contained in one file, bg.h. shown in Figure 19. The preprocessor directive
#define gives names to constants, also known as literals. By using these literals, a

change can be easily made in one place and take effect throughout the program.

34

#define MAXNAME 25
#define MAXF76COEF 3
#define MAXSHIPTYPES 8
- #define MAXORD 100
#define MAXRATES 6
#define MAXACFT 20
#define MAXTHREATLEVELS 2 /* Low, Medium, High */
#define MAXENGAGEMENTS 2 /* Raid, Strike, ASW */
- #define MAXINTERVALS 3
#define HOURSINDAY 23
#define MAXUSETYPES 5
#define MAXBGSHIPS 30
#define MAXBGS 10
#define MAXORD 100
#define MAXSHIPS 100
#define DTGLENGTH 15
#define MAXLENGTH 25
#define F76DATA “/h/bglcss/scripts/data/F76.dat”
#define BGDATA “/h/bglcss/scripts/data/BGData.dat”
#define BGSHIPS “/h/bglcss/scripts/data/Ships”
#define NAVYSHIPS “/h/bglcss/scripts/data/NavyShips.dat”
#define EVENTSDATA »/h/bglcss/scripts/data/Events”
#define HEADERSDATA "/h/bglcss/scripts/data/Headers”

Figure 19: Symbolic Constants for Battle Groups and Ships

D. DATA STRUCTURES

There are two different kinds of data used in this program: battle group data and event

data.

1. Battle Groups

Battle groups are represented by an array of battle group records or structs. Each
battle group is a struct containing a name, a designation, a structure containing settings
information, a structure containing location information, an array of ship structures, and an
array of capacity information structures as shown in Figure 20. The battle groups are
represented by arrays of structures. The most frequent activities associated with the battle

groups involve data access, i.e. reading or writing data. Insertions and deletions of

35

structures to the battle group are performed without regard to the order of structures within

an array. Access to structures of an array is performed easily using an index to an array.

L
BG[0] | Name

Designation
Settings

Location

Ships

Results

Figure 20: Battle Group Data Structures

Figure 21 shows the C code that defines the battle group data struct. This

definition is found in the bg . h file contained in Appendix B.

typedef struct (
char Name [MAXNAME] ;
char Designation [MAXNAME] ;
SettingsInfo Settings;
LocationInfo Location;
ShiplInfo Ships [MAXBGSHIPS] ;
CapacityInfo Results[MAXBGSHIPS];
}BGInfo;

Figure 21: Battle Group Information Type Definition

36

The first four variables contained in the settings struct shown in Figure 22 are
“trip-wire” reserve levels that are set by the user so that when reserve levels fall below these
levels, the user is notified. FuelRes represents F-76 fuel reserve level, CLFFuelRes
represents CLF fuel reserve levels, OrdRes represents ordnance reserve levels, and
CLFOrdRes represcnts CLF ordnance reserve levels. MaxF76 and MaxF44 each
represents the maximum fuel capacities for F-76 and F-44 fuels respectively. StationSpeed
represents battle group ship stationing speed, UnrepSpeed represents underway
replenishment battle group ship speed, and AcftShipSpeed represents battle group aircraft
carrier ship speed. Each of these variables are represented by a floating point type.

PredictStart is used to represent the integer value of the date time group supplied
by the user. This variable represents the first time interval for which commodity percent
capacities are to be computed. The following array of integers, PredictHours, is used to
hold the number of hours to offset each of the three intervals of time for which commoditiy

percent capacities are to be computed.

typedef struct {
float FuelRes,
CLFFuelRes,
OrdRes,
CLFOrdRes,
MaxF76,
MaxF44,
StationSpeed,
UnrepSpeed,
AcftShipSpeed;
int PredictStart;
int PredictHours [MAXINTERVALS] ;
}SettingsInfo;

Figure 22: Settings Information Type Definition

The location information struct is used to hold the current battle group location
information as shown in Figure 23. This same struct definition is also used within the ship

struct.

37

typedef struct {
int Dtg;
float Speed,
MaxSpeed;
double Latitude,
Longitude,
Course;
}Locationlnfo;

Figure 23: Location Information Type Definition

Capacity information contains three arrays as shown in Figure 24. The
F76Capacity and F44Capacity arrays are designed to each contain MAXINTERVALS

floating point values, one for each time interval.

typedel struct{
float F76Capacity {MAXINTERVALS],
F44Capacity [MAXINTERVALS] ;
OrdCapInfo OrdCapacity (MAXINTERVALS];
}CapacityInfo;

Figure 24: Capacity Information Type Definition

2. Ships
The ship struct shown in Figure 25 contains string variables (in C, strings are
represented as arrays of chararacters) for the name and hull number of the ship. The Type
Combatant is represented as an enumerated type having one of the following values: Air,
Combatant, Station, and Shuttle.
Identical to the battle group struct, the ship struct also contains a location struct as

shown in Figure 26 .

typedef struct (
char Name [MAXNAME] ;
char Hull [MAXNAME] ;
CLFType TypeCombatant;
Locationlnfo Location;
F76Info F76;
F44Info Fd4;
int Approach,
BreakAway;
ordiInfo Ord {MAXORD] ;
AcftInfo Acft [MAXACFT] ;
}ShipInfo;

Figure 25: Ship Information Type Definition

typedetl struct {
int Dtg:;
float Speed,
MaxSpeed;
double Latitude,
Longitude,
Course;
}LocationInfo;

Figure 26: Location Information Type Definition

The next variable is a struct, containing data specific to the F-76 state as shown
in Figure 27. The first seven variables are integers used to represent the ship capacity in
gallons, the receive rate in gallons per minute, the transfer rate in gallons per minute, the
current number of gallons on hand, the most recent estimated number of gallons on hand,
the integer value of the date time group of the on hand reading, and the date time group of
the estimated on hand value. The last variable is an array of coefficients used in predicting

fuel consumption [SCHRADY 90].

39

typedef struct {
int Capacity,
ReceiveRate,
TransferRate,
OnHand,
EstOnHand,
OnHandDtg,
EstOnHanDtg;
float Coef [MAXF76COEF] ;
}F761Info;

Figure 27: F-76 Ship Fuel Information Type Definition

The struct shown in Figure 28 contains data specific to the F-44 aircraft fuel state
and is almost a mirror image of the previous F-76 struct mentioned above except that the

F-44 struct does not contain a coefficients array.

typedef struct (
int Capacity,

ReceiveRate,
TransferRate,
OnHand,
EstOnHand,
OnHandDtg,
EstOnHandDtg;

}1F441Info;

Figure 28: F-44 Aircraft Fuel Information Type Definition

An array of OrdlInfo structs, as shown in Figure 29, is contained in the ship struct.
Each OrdlInfo struct represents data specific to one ordnance item. The variables contained
in this struct are similar to the previous two fuel structs except that the OrdInfo struct
contains an array of use rates. MAXRATES refers to the six different use rates: low,

medium, or high average threat levels, and raid, strike, or ASW events.

40

typedef struct (
OrdName Name [MAXNAME] ;
int TotalNumber,
Capacity,
Range,
TransferRate,
OnHand,
EstOnHand,
OnHandDtg,
EstOnHandDtg;
OrdUse UseRate [MAXRATES] ;
yordInfo;

Figure 29: Ordnance Information Type Definition

3. Events

A doubly linked list is a data structure consisting of structs connected to each

other by pointers to the next and to the previous struct, as shown in Figure 30 .

Head

BGEvent] BGEvent__NBGEvem_’BGEvemrH BGEvent_,»‘ i i Null
-] aa -

Nul]||||<-

Figure 30: Battle Group Event List

The decision to use such a data structure was based on the intended use of battle
group event information. Since the purpose of BGLCSS is to dynamically simulate events
in time, the easy insertion, sorting, and deletion of events is the dominant criteria for
selecting the appropriate data structure. A doubly linked list fulfills this criteria. It allows

easy movement forward and bnckward between list element structures, sorted insertions

41

and deletions are easily performed by manipulating pointers. The pointers on the ends of
the list both point to null.

There are three different doubly linked list data structures used to implement the
battle group events: the battle group event list itself, the related event list, and the header
list. The battle group event list is represented by battle group event information structs in

a doubly linked list. The code used to define a BGEvent is shown in Figure 31 .

struct BGEvent {
struct BGEvent *Prev,
*Next;
int Dtg,
CreateTime,
PredictInterval,
BGEventType EType;
PredictType PType;
CalcType CType;
ThreatType TType;
UnrepInfo Unrep;
DirectionlInfo Direction;
StrikelInfo Strike;
RaidInfo Raid;
ASWInfo ASW;
b
typedef struct BGEvent BGEVENT;

Figure 31: Battle Group Event Type Definition

The first two variables are the pointers to the previous and to the next BGEvent
structs. The Dtg variable is the integer representation of date time group for the start of the
battle group event. The next integer variable is the system time stamp of the event’s
creation time. This is a unique time stamp for each event in the event list. The next four
variables are used when evaluating each event in the list. EType is used to identify the type
of event, i.e. battle group course and speed, AAW threat level, etc. PType is used to identify
whether the BGEvent PredictType is an orphan, child, parent, or interval. The first three
values will be discussed in the next section. The interval value refers to a BGEvent which
is actually a sentinel marking the time interval for calculation purposes. Unrep is a struct

containing data relevant to an underway replenishment event. Directionlnfo contains data

42

“—

about the course and speed of the ship involved. The last three structs contain information

specific to the strike, raid, and ASW events.
One of the most significant omissions in BGLCSS 1.0 was the way that an

o underway replenishment event and its associated stationing events were handled in the

event list. When a user added an underway replenishment event, depending on the tactic
used, several stationing events were also added to the list. If a user wanted to delete the
underway replenishment, it was necessary for the user to know which stationing events to
delete as well. This problem was corrected by using an additional doubly linked list for

related events as shown in Figure 32.

Head

Relation | Relation
Null 11 || ™ il

BGEvent BGEvent BGEvent

BGEvent _>| l I Null

. BGEvent > - L
g g — i -y

Nuit '

Figure 32: Battle Group Related Event and Battle Group Event List

When an underway replenishment or a consol event is created, a relation event,

shown in Figure 33, is also created and inserted into a doubly linked list. The relation struct

. is created based on the system creation time stamp of the underway replenishment event,
also known as a parent event. Each event associated with the underway replenishment

parent event also contains the same creation time. The relation event pointers point to all of

the child events, i.e. stationing events, in the BGEvent list. When the deletion of a

43

underway replenishment is to be performed, the related relation event is found and all of
the BGEvents to which it points are deleted along with itself. An orphan is an event that is

not related to any other event, such as a battle group course and speed or a ship stationing

event.

struct RelationType |
struct RelationType *Prev,
*riext;
int CreateTime;
BGEVENT *Childl,
*Child2,
*Childs,
*Child4,
*Childs;
}i
typedef struct RelationType RELATION;

Figure 33: Relation Type Definition

The last doubly iinked list contains the components of a string to represent an

event to the user in English (see Figure 34).

Head

‘ BGHeade BGHeadel

> BGHeade BGHeadel,__b‘[BGHeadeﬂ—-bl I] 1 Null
Null 1) | fe- - -] il

Figure 34: Battle Group Header List

It is used as a convenient way to show the string representation of the event list.
For example, the event list is displayed to the user as shown in Figure 35. This list is made
up of structs containing the string equivalent of the BGEvent list. It is used instead of
traversing the BGEvent list and generating string equivalents for each event each time that

the event list would be displayed on a panel.

44

Figure 35: BGLCSS 2.0 Event List Panel

Figure 36 shows the BGHeader Type definition for the header structs in the

header list.

struct BGHeader({
struct BGHeader *Prev,

*Next ;
BGEventType EType;
int Index;
int DTG;
char Date [DTGLENGTH] ;
char Title [MAXLENGTH] ;
float Course;
float Speed;

)

typedef struct BGHeader BGHEADER;

Figure 36: Battle Group Header Type Definition

45

The application library design refers to the functions written to operate on the data

structures in the BGLCSS application. There are three groups of fnctions based on the

E. BGLCSS 2.0 LIBRARY DESIGN

kind of data involved: battle groups, ships, and events.

Table 3 shows the function name and purpose for each function that operates on battle

groups. These functions are contained in bg . c in Appendix B.

Table 3: BATTLE GROUP FUNCTIONS

Function

Purpose

CancelBG

—

Clears out data from the text keyin items on BG panels BGData and New BG
panels.

DeleteBG

Deletes a battle group from the array by replacing its name with blank spaces.

GetBG

Using the string representation of the name of a battle group and the index to
the appropriate battle group in the array, return the index to the battle group.

GetBGs

Given the battle group array, this function gets the battle group data from the
battle group data ASCII text file. Returns the next available battle group in-
dex. Given the battle group array, this function gets the battle group data

GetShip

Using the string of a ship name and the index to the appropriate battle group.
this function returns the ship index for the appropriate ship.

MakeBG

Makes a new battle group. using information provided by user to New BG
panel. The index for the next available battle group in the array is returned.

SaveBGs

Saves all battle groups to the ASCII text file containing BG data.

SaveNewBG

Saves the new battle group using the TAE Vm target object from the user in-
put panel. First, GetBGs is called, returning the available index to the array.
Next. Make BG is called and then SaveBGS saves all battle groups.

ShowBG

Shows the battle group’s data given battie group array, index and panel name.

ShowBGs

Shows the list of battle groups from an ASCII text file to an item in a panel.

Table 4 shows the function name and purpose for each function that operates on ships.

These functions are also contained in bg.c in Appendix B.

46

Table 4: SHIP FUNCTIONS

Function Purpose

AddShip This function adds a ship and its data to a battle group. The ship list
presented to the user contains both the hull number and the ship
name. The hull number is required to get the ship type for the appro-
priate F76 information. The ship name is returned.

ConvertTypeCombatant | Converts an integer to the appropriate string representation of Type-
Combatant. C stores the value of an enumerated type on an ASCII
file as an integer. To display this value in a panel, it must be convert-
ed to a string.

GetF76Table Gets the F76 information by ship type from the ASCII text file into
memory.

GetShip Using the string of a ship name and the index to the appropriate bat-
tle group, GetShip returns the ship index for the appropriate ship.

SaveBGShips Using the BG array and the index to the specific battle group, this
function saves the battle group's ships’ data to an ASCII text file.

ShowBGShips Shows the list of battle group ships, given battle group index. panel
name, and selection list item on panel.

ShowF76 Uses TAE Wpt and Vm functions to display values to the Ship panel.

ShowNavyShips Shows the list of navy ships from ASCIH text file to item in panel.

ShowShip Uses TAE Wpt and Vm functions to display values to the Ship panel.

TypeShip Checks the first two characters in a ship’s hull number and retums
an integer that equates to an enumerated ship type.

Table 5 shows the function name and purpose for each function that operates on the
three doubly linked lists involved with BGLCSS events. These functions are contained in

BGEventsLib.c in Appendix B.

47

Table 5: BATTLE GROUP EVENT FUNCTIONS

Function

Purpose

DeleteBGEvent

Given a pointer to the head of the battle group event list and the event to be
deleted, this function deletes the event. Before calling this function with the
Parent Event node pointer, need to call the DeleteChildren function to delete
the associated children.

DeleteChildren

This function makes repeated calls to DeleteBGEvent in order to delete all
of the children of the Parent event. Returns the head of the battle group event
list.

GetBGEvents

This function reads the battle group event list data from the appropriate
ASCII text file given the index to the battle group array. It returns a pointer
to the head of the battle group event list.

GetParent

This functions finds the Parent event with its unique time stamp. If the par-
ent doesn’t exist, then it finds the orphan event and returns a pointer to the
event found.

GetRelation

This functions finds the Parent event with its unique time stamp. If the par-
ent doesn’t exist, then it finds the orphan event and returns a pointer to the
event found.

InsertBGEvent

This function takes a pointer to the head of the battle group event list and
a pointer to the newly created battle group event and inserts the new event
into the list based on chronological date time group of the events. Retums
a pointer to the head of the battle group event list.

InsertRelation

This function’s basic algorithm is virtually the same to InsetBGEvent ex-
cept for the final if-statement assignments and the data type involved.

MakeBGEvent

Given the information from an event panel, this function makes a battle
event node and returns a pointer to it. This function is currently designed to
handle only a battle group course and speed change event.

MakeChild

This function makes a child event by first calling MakeBGEvent and attach-
ing the child to the appropriate relation node. After a call to this function
is made, need to call, for instance, UnrepCalculations and make the appro-
priate assignments to the event node. Function retums a pointer to the newly
made child.

MakeRelation

This functions makes a related-event node used to connect related events to-
gether such as an unrep with its associated stationing events. The parameter
passed is the integer value of the creation time for the parent event (such as
the unrep event). No more than 5 associated events are allowed by this func-
tion. Returns a pointer to the newly created relation node.

48

Table 5: BATTLE GROUP EVENT FUNCTIONS

Function

Purpose

MakeUnrep

Given a pointer to the newly made event node and the values passed from
the Unrep panel, return a completed unrep event node to be added to the
event list.

SaveBGEvents

This function saves the battle group events list given an index to the appro-
priate battle group in the array and a pointer to the head of the battle group
event list. It returns the pointer to the head of the list.

MakeBGHeader

This function creates the header to be displayed in the event list panel to the
user. Given the event parameters, return a header node.

GetBGHeaders

Given the appropriate index to the battle group array, this function gets the
battle group header information from the appropriate ASCII text file and re-
turns a pointer to the head of the battle group header list. Similar in algo-
rithm to GetBGEvents.

InsertBGHeader

This {.nction inserts the ncwly created BGHeader into the Header list given
a pointer to the head of the header list and a pointer to the newly created
BGHeader. It returns a pointer to the head of the header list.

SaveBGHeaders

Given an index to the battle group array and a pointer to the head of the
battle group header list, this function saves the header list data to the appro-
priate ASCII text file. Retumns a pointer to the head of the header list.

F. PROGRAM INTEGRATION

There are two ways to connect a call to an application library function to the interface

code. If there is only one line of code, i.e. a call to a single function, this line of code can

be inserted at the WorkBench level using the Connection Specification Panel shown in the

previous chapter. This is the best method, because if an item on a panel is changed from an

event-generating item to a non-event-generating item, the source code is overwritten. The

original file is copied to a backup file with a.bak suffix. However, if several calls need

to be made to handie a given TAE event, then the insertion must be made by hand by the

applications programmer. To maximize integration at the WorkBench level, once a

sequence of application function calls within a TAE Plus event handler function are

debugged, a higher-level application function can be written to make the sequence of

49

function calls itself. Thus, a higher-level function call can be integrated at the WorkBench
level.

The TAE Plus documentation suggests that a symbol be used for each alteration to
TAE Plus generated source code so that in the event of code regeneration, a relatively easy
cut and paste operation can be performed. The /*BERN*/ symbol was used in this
application.

TAE Plus uses an Imakefile to create an application specific Makefile which
then correctly compiles and links object files with the appropriate libraries. The
Imakefile can be edited to include the application library code for compilation. In this
case, the APP flags in the Imakefile for the BGSetup module to be bg.c. See the
Imakefile in Appendix B.

Each panel file must include the pan_name.h files for associated panels as well as
connected panels. Connected panels are already handled by the TAE code generator.
Associations that fall outside of the WorkBench domain must be done by hand. A panel
may be associated with another if, for instance, data from one panel is required to perform
operations initiated by another panel. Although TAE automatically will insert a #include
pan_* . h for connected panels, the application writer must still explicitly include header
files for panels requiring information from a previous panel.

Any application functions used in the pan_* . c files must be declared as external

ahead of the event handling function definition for the particular panel.

G. STRUCTURED DESIGN PROBLEMS

Despite the top-down functional decomposition approach to this application, there are
several problems with this design. The separation of the code and the data is evident in the
separation of the struct and type definitions in bg.h and BGEventsLib.h and the
function libraries in bg.c and BGEventsLib.c. At any point in the main program, a

variable such as a BGInfo array could be declared and filled with bad data and then saved

50

to the ASCII text file. This vulnerability of the battle group data is a clear weakness of this
design.

Second, while this application does define numerous user-defined types such as the
enumerated types and structs, these definitions amount only to labels that improve program
clarity. They do not prevent illogical operations from being performed such as assigning
bad values to the enumerated types. Furthermore, as previously mentioned, date time
groups and latitudes and longitudes are reduced to built-in data types and poorly represent
real world entities. This data type deficiency led to the GOTS library’s long list of
specialized functions as well as to the redundant BGLCSS library functions such as the
InsertBGEvent, InsertBGHeader, etc.

Third, the distributed functionality of this design will make subsequent program
modifications and extensions difficult. For instance, to add another logistics event type
would require changes to be made to every event-related function that contained a case

statement specific to event type.

51

V. BGLCSS 2.0 OBJECT-ORIENTED DESIGN

A. CLASSES

This chapter provides a high-level view of how BGLCSS 2.0 could be designed using
an object-oriented paradigm in C++. We intend to provide examples of how the use of an
object-oriented paradigm, when correctly applied. leads to code reuse, ease of program
maintenance and extension. Since the arguments presented here are not dependent on low-
level definition details, most class member functions are presented only as prototypes.

Obiject-oriented design is based on classes and one useful approach to object-oriented

design consists of the following methodology [COPLIEN 92]:

(1) Identify the entities in the application domain.
(2) 1dentify the behaviors of the entitics.
(3) Identify the relationships between entities.

(4) Create a C++ design structure from the entities.

According to step (1), the entities in the application domain are battle groups, ships,
and logistics events. Step (2), the identification of the behaviors of the entities is listed in
Table 6. The behaviors of the battle group entity are limited to getting, setting, adding, and
deleting subcomponents. The ship entity, in addition to these behaviors, consumes and fills
up with F-76, F-44, and ordnance commodities. Events, shown as a high-level abstraction
of all twelve events, includes a computation behavior called ProcessEvents which performs

calculations of the F-76, F-44, and ordnance states of ships in a battle group.

Table 6: SAMPLE BEHAVIORS OF BGLCSS ENTITIES

Battle Groups Ships Events
GetBGName [GespName | GevemiList |
GetBGlIndex GetShiplndex SaveEventList
GetBG GetShipData AddEvent
SaveBG SetShipData DeleteEvent
GetBGShips GetShipLocation GetEvent
SaveBGShips SetShipLocation ProcessEvents
AddBGShip GetShipF76
DeleteBGShip SetShipF76
GetBGLocation GetShipF44
SetBGLocation SetShipF44
GetBGResults GetShipOrdnance
SetBGResults SetShipOrdnance

GetShipAcft
SetShipAcft
ConsumeF76
ConsumeF44
ConsumeOrdnance
FillF76

FillF44
FillOrdnance

Step (3), identifying the relationships between entities, is probably the most crucial
step of the design process. First, the battle group exhibits a has a relationship with its ships,
settings, location, and results. This relationship can be modeled with
composition. Therefore, an array of ShipInfo class objects, a SettingsInfo class object, a

Location Info class object, and an array of Capacitylnfo class objects can be contained

53

—

within a BGInfo class object. Second, the ShipInfo class can be modeled based on an is a

relationship with all of the special cases of a ship: destroyer, frigate, aircraft carrier, etc.

Finally, events, at this level of abstraction, involve a uses a relationship because, when the
ProcessEvents behavior is performed, it requires the use of ShipInfo objects. At the level
of specific events as in the case of Unrep and Consol events, both of these events involve
a creates a relationship with SetStation events.

Step (4), a C++ design structure for each of these entities, is presented in detail.

1. Battle Group Class

A real world Navy battle group is characterized by its name and designation, a set
of ships, and, for the purposes of the BGLCSS simulation program, a collection of trip-wire
settings. The decision to design the battle group class using composition is based on the has
a relationship that describes the real world battle group entity. The battle group has a set of
settings, a location, a set of ships and a set of calculation results. With composition, all of
the data and functions of the first class are reused in the second class. For example, all of
the Locationinfo class data and function members are used in the BGInfo class as well as
reused again in the ShiplInfo class discussed later. This reuse is similar to the nesting of the
LocationInfo struct within the BGInfo and Shiplnfo structs in the structured design
described in chapter IV except that the functions, as well as the data, are included.

While the structure of the BGlnfo class is similar to its corresponding structured
paradigm struct, its data members can be hidden from outside the class. By declaring them
to be private, they can only be accessed by member functions of the same class. The array
of Shiplnfo objects and the Settingsinfo, Locationlnfo, and Resultsinfo C++ classes

compose the BGlInfo class as shown in Figure 37.

54

class BGInto {

private:

char

char
ShipInfo
SettingsiInfo
LocationInfo
CapacityInfo

public:

BGInfo();
BGInfo(char* N,
~BGInfo();

Name [MAXNAME] ;
Designation [MAXNAME] ;
Ships [MAXBGSHIPS] ;
Settings;

Location;

Results [MAXBGSHIPS] ;

char* D, SettingsInfo* S)

void SaveBGShips (ShipInfo S);

friend BGInfo& CalculateF76 (BGEvent&, int 1);
void ShowBGShips (int 1i);

void ShowBG(int t);

int SaveNewBG (BGInfo B);

void CancelBG(Id I);

int GetBG(int 1i);

int AddBGShip(int i, ShipInfo* §);
int DeleteBGShip(int i, ShipInfo* S);
LocationInfo* GetBGLocation(int 1i);

int SetBGLocation(LocationInfo* L);
CapacitylInfo GetBGResults (int i);

int SetBGResults (CapacityInfo C);

Figure 37: Battle Group Data and Function Members

The choice to keep the array as the data structure to contain the ships and battle
groups was made for simplicity. The array of battle groups, i.e. the array of BGInfo objects

is shown in Figure 38.

class BGArray {

private:
BGInfo

public:
BGArray () ;
~BGArray () :
void
void
BGInfo

BG [MAXBGS] ;

SaveBGs (BGInfo B);
ShowBGs (BGInfo B);
GetBGs () ;

}i

Figure 38: Battle Group Array Data and Function Members

2. Ship Class Hierarchy

Contained within the battle group is the array of ships. The object-oriented ship
class is shown in Figure 39. It is a classic example of a single inheritance class hierarchy.
There are five main classes derived from the ship base class: Destroyer, Frigate, Cruiser,
Aircraft Carrier, and CLF Ship. CLF Ship is further divided into Ammunition ship, Fleet
Oiler and Combat Support Ship. Finally, at the ends of the ship class tree are the specific
ship types such as DD963, FFG7, etc. This hierarchy is based on the Navy's notion of ship
class which is based on ship architecture and ship mission. BGLCSS, however, is driven
by the ship type differences in F-76 and F-44 fuel, and ordnance attributes. For instance,
the F-76 fuel capacity and F-76 ship fuel burn rate is dependent on the Navy ship class
such as the DD963 destroyer class. As far as BGLCSS 2.0 is concerned, this makes all of

the calculations of commodity use far simpler to modify and extend.

Ship
Destroyet Frigate Cruiser é‘zilfr‘liirg{‘ gtlflf)
| Am Combat
DD963| | DDGS1{| FFG7 ||FF10541c61 [c6s2] [caa7||caza|cves|| srip | Heer Support

Figure 39: Ship Class Hierarchy

The base class, Shipinfo class, as shown in Figure 40, contains protected data
members and public member functions, some of which have been declared virtual. Base

class access determines how the derived class receives inherited members.

56

rlIIIIlIIIIIIIllIllllllllllllllllIllllllllll..lllllIIII-I----r*

class ShiplInto {
protected:
enum CLFType (Air, Combatant, Station,Shuttle};
enum ShipType(Destroyer, Frigate,Cruiser, AcftCarrier,

CLFShip);
char Name {40] ;
char Hullf{10];
CLFType TypeCombatant ;
LocationlInfo Location;
F76Info F76;
F44Info Fa4;
int Approach,
BreakAway;
OrdInfo Ord;
AcftInfo Acft;
public:
ShipInfo(); //constructor
virtual ~ShipInfo();//destructor
int GetShip(int t, char* c);
virtual int GetShipType (ShipInfo s, int i) -
virtual int SetShipType (ShipInfo s, int 1i);
virtual int SetCLFType (ShipInfo s, int i);
virtual int GetCLFType (ShipInfo s, int 1i);
virtual int SetF76Info(ShipInfo s, int 1i);
virtual int GetF76Info(ShipInfo s, int 1i);
char* GetShipName (int 1i);

Y
class DestroyerInfo : public ShipInfo {
protected:
enum DestroyerType(DD963, DD51};

DestroyerType DType;

public:
int GetShipType (DestroyerInfo s, int i);
int SetShipType (DestroyerInfo s, int i);
int SetCLFType (DestroyerInfo s, int i});
int GetCLFType (DestroyerInfo s, int 1i);

Y
class DD962Info : public DestroyerInfo {

public:
int GetF76Info(DD%63Info d, int 1i);
int SetF76Info(DD963Info 4, int 1i);
//other commodities are similar
int ConsumeF76(int i, F76Info f);
1t FillF76(int i, F76Info f);

//other commodities are similar

Figure 40: Ship Class Data and Function Members

Class access is public for the Destroyerlnfo class. This means that the base class’s

protected members remain protected (inheritable, but still hidden from the rest of the

program) and the public members remain public. The same is true for the class access of

57

R R R R R R ——

the DD963Info class. Destroyerlnfo class access is public for the DD963Info class. The

member functions in this last class are the appropriate place for the DD962 specific
commodity values to be initialized. These member functions were made virtual in the
Shiplnfo base class so that they could be tailored for each bottom-level ship class such as
DD963. The ship-specific enumerated types were encapsulated within the specific class
that they are relevant. By contrast, in the structured programming design, the enumerated

types are global to the program.

3. Logistics Events Class Hierarchy
The logistics event classes are the most challenging to design of the BGLCSS
classes. When the entities were identified in the BGLCSS application domain, the event
list, events in general, and the twelve specific types of logistics events were discussed in
general terms. At this point in the analysis, it is possible to make several class designs. We

will discuss two specific designs, the first of which is shown in Figure 41.

BGLCSS
Event \-—
ASW
Prosecution
Raid
Stnke
Station
AAW
Unrep Threat
ASW
Consol Threat
Transfer Transfer
Ordnance Fuel

Figure 41: BGLCSS Event Class Hierarchy With Twelve Derived Classes

First, the twelve BGLCSS logistics events could placed in a class hierarchy where

there is one abstract base class from which all twelve logistics event classes are derived.

58

Although an end user might visualize the twelve BGLCSS events in this way, a
class hierarchy of this design dees little to support code reuse. This is because, when
describing the entity behaviors or functions in detail as outlined in step (2) of the object-

oriented programming paradigm methodology, the patterns shown in Table 9 become clear.

- Table 7: BGLCSS EVENT COMMON FUNCTIONS
Affects F-76 Level Affects F-44 Level | Affects Ordnance Level

BGCourseSpeed Yes

SetShipStation Yes

ShipCourseSpeed Yes

FuelTransfer Yes Yes

AAWThreatLevel Yes

Strike Yes

Unrep Yes Yes Yes
Consol Yes Yes Yes
ASWThreatLevel Yes Yes
Raid Yes Yes
OrdnanceTransfer Yes
ASW Prosecution Yes

Each of these events affects a different combination of the F-76, F-44, and
ordnance commodities and would require duplicated code regarding the calculations of
commodity levels.

At this point, it is useful to draw a distinction between the problem domain and
the program domain. The problem domain refers to the real world problem that the
software is intended to solve. In contrast to the structured programming paradigm, the
object-oriented programming paradigm focuses on closely mapping tiie entities in the real

world, the problem domain, to entities in software. The program domain differs from the

59

problem domain in that it represents the programming language, operating system, and
programming paradigm.Writing a program consists of building a solution within the
program domain to solve a problem in the problem domain.

The most straightforward approach is to first solve the problem within the
problem domain, then construct a model of the problem domain within the program domain
and map the solution over. The more explicit the model, the more obvious the mapping and
the easier it becomes to write and understand the resulting program. [DAVIS 92]. Since the
problem domain of BGLCSS is to generate percent capacity states for F-76, F-44, and
ordnance for ships and battle groups, this distinction was used to determine whether
clusterings of similar event behaviors was present. Table 7 clearly shows that there are
common behaviors/functions among the events.

The solution to designing a class hierarchy that promotes code reuse involve
muitiple inheritance. Multiple inheritance permits a class to be derived from two or more
base classes. With this kind of construction, class relationships become much more
involved than with single inheritance. Under single inheritance, the inheritance hierarchy
1s a tree; under muluple inheritance, the hierarchy is a directed acyclic graph. Cargill makes
a distinction between synthetic and natural classes. Synthetic classes do not correspond to
abstractions found in the application problem domain. Synthetic classes emerge during
design and coding of a system in response to internal, synthetic needs of the software. This
is in contrast to natural classes, those that correspond to abstractions from the problem
domain and typically arise either during analysis or early design. A simple criterion is to
ask end users if they recognize the abstraction. Because a natural class comes from the
problem domain, an end user will understand its purpose; a synthetic class arises only from
software implementation considerations, so the end user will not appreciate the need for it
[CARGILL 92).

The BGLCSS 2.0 event classes are more complex than the ship classes because,
i1 order to maximize reuse of class member functions, multiple inheritance is necessary.

Instead of a tree structure as in the ship classes. the event class is a directed acyclic graph,

60

where the classes lower on the tree inherit from the classes connected above them. This
design decision is based on the common denominators of the logistics events, in other
words, these events either affect F-76, F-44, or ordnance, or a combination of these. There
are no is a relationships. The class hierarchy is just a convenience to reuse code,
particularly the member functions of the commodity affecting classes. There is no domain

specific relationship.

Logistics
Event
F-76 Affecting Event F-44 Affecting Event Ordnance Affecting Event
1 YRy I
BG Course AA
& Speed Transfer
i Ordnance
Set ' Strike ASW
tation Prosecution
hip Cours
& Speed
ASW
Threat
Raid
Unrep
Consol

Figure 42: Logistics Event Class Hierarchy With Three Synthetic Derived Classes

The C++ class definition for the logistics event class is provided in Figure 43. The

enumerated types specific to the events are encapsulated within the abstract base class

BGEvent.

61

class BGEvent {
protected:
enum BGEventType (BGCourseSpeed, ASWLevel, AAWLevel,
SetStation, ShipCourseSpeed, Unrep, Consol,
FuelTransfer, OrdTransfer, RaidEvent, StrikeEvent,
ASWProsecute, ResumeBGCourseSpeed, Other};

enum PredictType {Orphan, Child, Parent, Interval);
enum ThreatType (Low, Med, High, Raid, Strike, Asw)};

enum CalcType {Ord, F76, F44, BothFuel, All};

BGEvent *Prev,
*Next ;

int DTG,
Index,
Created,
PredictInterval;

BGEventType EType;

PredictType PType;

CalcType CType;

DirectionInfo Direction;

public:
BGEvent () ;
~BGEvent () ;

):

class F76Event : public BGEvent {
public:
friend BGInfo& BGInfo::CalculateF76 (BGEvent&, int 1i);
Y

class Unrep : public F76Event (
public:

UnrepInfo UnrepData;

Figure 43: BGEvent Class Data and Function

Whereas in the BGInfo struct in the structured programming design described in
chapter IV contained the Unreplnfo, ThreatType, Strikelnfo, Raidlnfo, and ASWlnfo
structs, they are omitted from the BGlInfo abstract base class. Instead, these objects are
contained only in the appropriate bottom level class objects. For instance. the Unreplnfo
object would be contained in the Unrep class only. This design is more representative of
the real world entities and makes future modifications and extensions easier to perform
because all of the underway replenishment data and functions are localized to the one class

where this information is relevent.

62

When a function manipulates objects of two distinct classes, the function can be
made a friend function to both classes. This is what is done with the CalculateF76 function
which illustrates the uses a relationship between the BGEvent class and the BGInfo class.
This function was made a friend to both classes.

As far as code reuse is concermed, with C++ version 2.1, the events classes
discussed so far provide only limited code reuse when considering that the BGLCSS
application has three doubly linked lists, each performing insertion, deletion, search, etc.
Using this event hierarchy as is would involve creating three classes for each of the doubly
linked lists. Each of these data structures could only handle specific objects. To capture
maximum code reuse for the logistics events and list operations in BGLCSS, a feature
supported in C++ 3.0 is needed. Templates provide a solution to this code duplication
problem. Template classes model generic objects that provide similar operations for
different data types. By using a template class, as shown in Figure 44, a generic double

linked list can be instantiated for pre-defined and user-defined types.

emplate <class T>
class List (
protected:
struct Node ¢
T Data;
Node* Prev;
Node* Next;
Y
Node *Nodeptr;
Node *Headptr;
public:
List{);
~List();
virtual InsertNode(T);
virtual DeleteNode(T& node);
virtual SearchNode (T& node) ;

Figure 44: BGLCSS Template List Class

In BGLCSS, we could instantiate three List classes using the three different

objects: BGEvents, BGHeader, and Relation. Then, from the BGEvents abstract base class.

63

the synthetic commodity affecting classes would be derived. Finally, the twelve logistics
events would be derived from the appropriate set or sets of synthetic commodity affecting

classes

B. SYMBOLIC CONSTANTS

Instead of using the preprocessor directive #def ine to define program constants and
string literals, C++ and ANSI C provide const to reserve storage for data that is read-only
as shown in Figure 45.The drawback to using #define is that is does no type checking.
Any value can be given to #def ine without regard to proper type checking. The lack of
proper type checking is one of C’s weaknesses that can pose enormous problems for the

programmer when trying to trace bugs in code.

const 1nt MAXNAME = 25;
const int MAXF76COEF =
const int MAXSHIPTYPES
const int MAXORD =
const int MAXACFT =
const int MAXTHREATLEVELS =
const int MAXINTERVALS =
const int MAXENGAGEMENTS =
const int HOURSINDAY =
congt int MAXUSETYPES =
const int MAXBGSHIPS =
const int MAXBGS = 10;

const int MAXORD = 100,

const int MAXSHIPS = 100,

const int DTGLENGTH = 15

const int MAXLENGTH = 2%;

const chartv F76DATA{] = */h/baglcscs/scriptesdata/Fis.dat”;

censt char BGDATAL) = “/hrsbgless/scripts/data/BGhata.dat”;
censt char BGSHIPS|) = "/h/bkgleoassscripts/daca/Ships”;

~onst char NAVYSHIPS!] = "/h/bgl scripts/data/NavyZhips.dat”;
~onst chat EVENTSLATA) = "/h/bgleosr covintzasdata, Evenr ot

[l S I eSS UURN SO B S B ¢ s R Vs
L ne Ll e me e S
~. - O

(o)

Figure 45: Symbolic Constants for Battle Groups and Ships

C. OBJECT-ORIENTED DESIGN BENEFITS

This description of object-oriented mechanisms when applied to the BGLCSS
application domain, provided examples of ease of modification , extension, and code reuse.

Ease of modification and extension are the natural by-products of a class structure where

64

—f

data and function are encapsulated. The program is easier to modify because the data and

functions are not separate and instead would work together. The clutter of the similarly

named functions such as InsertBGEvent, InsertBGHeader, and InsertRelation would be
replaced by the use of polynorphism where the respective object is sent a message such
as Insert.

The Shiplnfo class hierarchy that derived specialized classes for each Navy ship class
such as DD-963 provided a better way to perform Navy class-specific commodity
information.

Code reuse was to a limited extent accomplished with the use of synthetic classes in
the BGEvent class hierarchy. A more substantial degree of code reuse could be achieved

by using a list template class for all three of the inked list structures.

65

VI. CONCLUSION AND RECOMMENDATIONS

The structured and object-oriented designs of the same program, BGLCSS 2.0, were
presented and the merits of the application of each paradigm were discussed. It is clear that
there are numerous technical benefits to using an object-oriented programming paradigm

instead of a structured programming paradigm for systems expected to evolve over time.

There is little doubt that Command, Control, and Communications (C3) applications such
as the BGLCSS tactical decision aid will be refined and extended as battle group
coordinators use the system and identify additional components to be added or existing
ones to be changed. In fact, one thesis currently being developed by an Operations Research
Department student at the Naval Postgraduate School involves a modified version of the
underway replenishment event within BGLCSS.

The initial drawback to moving to an object-oriented programming paradigm can be
characterized as the trade-off between long-term planning and design versus short-term
production gains. At the beginning of a move to an object-oriented approach, a substantial
amount of time is required to study the paradigm and produce an overall design for the
classes and their hierarchies in the application. By contrast, accepting the status quo and
remaining within a structured programming paradigm requires no extra effort. In a world
of time constraints, decisions are frequently made to quickly produce a software application
prototype and delay concern about modification and extension until a later time. While this
reasoning has dominated many software development projects, it is recommended that
organizations such as the Navy Space and Warfare Command which is in charge of
managing large software systems pursue moving towards adopting an object-oriented
paradigm in the future. The long-term benefits outweigh the short-term benefits. It is also
recommended that NTCS-A applications programmers consider using TAE Plus to build
their graphical user interfaces instead of using low-level Motif functions. A high-level tool

such as TAE Plus greatly reduced BGLCSS graphical user interface development time.

APPENDIX A. BGLCSS 2.0 GRAPHICAL USER INTERFACE
PANELS

sl e seere bovede o

U b uel Beseroe Lo

= Ordncnoe Pl sery

Figure 47: BGLCSS 2.0 New Battle Group Data Panel

67

Saloming

~
M ¢

ey Gpoeed

oiriateot
Aaintinn

Figure 48: BGLCSS 2.0 Battle Group Data Panel

68

E (et {ame

E Lt Class

Figure 50: BGLCSS 2.0 Ship Logistics Panel

69

b s Manes

On Hand {gabions):

Capacity {galions):
b Eob Un Handigadionsy
Est O

b Heceive Bate {(gallensiminude);

Transfer Rale (gallonsininute):

Figure 51: BGLCSS 2.0 Ship F-76 Fuel Panel

70

X

j
Phedt Monae g
! :
- E (v Hand (galionsy %
E Capacity {galions) :
%
X On Hand (gallons) g
LG %
Heceive Rate (gallun z
E Tronster Bate {gat §
E Cutluns Per ;
|
|
;
]
i,
[4
Figure 53: BGLCSS 2.0 Select Ordnance Panel

71

SESHES N

Figure 54: BGLCSS 2.0 Ordnance Load Panel

it g

: Oprdngnee Hame:
Capaciiy:

G Hand:

- iat UnHand

5t LG

Figure 55: BGLCSS 2.0 Ordnance Data Panel

72

B A

Uhsit Mame:

bat DG

AT AL LA T AL AL AR TR L AT 1A A LA A A A LA A LA LA A L AR A LA L AT AR LR AL AL AR TR AR A £ AR AR R AR AR AR AR ATAIAR LA AR L AR A A

Figure 57: BGLCSS 2.0 Aircraft Data Panel

7

[oued [enuy siuaag dnoln apied 'z SSOT1DY ‘8¢ 2ndiy

74

DG

. {knots)

Course:

Figure 59: BGLCSS 2.0 Battie Group Course and Speed Panel

Figure 60: BGLCSS 2.0 ASW Threat Level Panel

78

RS

o TUE EERT
Ty NL N \(!ZE

- Qelect Ship:

SRR

Latidh ong:

Figure 62: BGLCSS 2.0 Set Station Panel

76

b Uit Piaang:
E Tine Off Station:

e o Stadion:

A AR AAAAAA AN NN AN AN PP N N NN N P P NN < <]

|
{
|
|
i
|
|
|
|
|
|

g_
s
T
|
1
:
}
|

Qufse:

Figure 64: BGLCSS 2.0 Ship Course and Speed Panel

77

coiving S

W’
T
g o

T A T L D S T T L S K L TS L s

Figure 65: BGLCSS 2.0 Underway Replenishment Panel

Hon:

T T T A AT 1 T T LT L LT T T T B L 40 T3 € T T e

Figure 66: BGLCSS 2.0 Underway Replenishment Results Panel

78

 Rendervous. Select eceiving Sty ?
. DY §
%
§
%
. E . 3
E b bl ong:
' Seleet Detivery $1 §
3
!
|
|
!
%
- Duration
r]
Figure 68: BGLCSS 2.0 Consol Results Panel

79

.
i
:
§
3
o
|
n-

Figure 70: BGLCSS 2.0 Select Ordnance Panel

80

. ~
s it Thane!

- Sefect Ordnancy:

Crrpadtaiily,

310
L Tiweal Axise

iThreaETypt:

i
:
i
§
H
§
i
§:
£
&
i

R IS F 1O R KX

3

Figure 72: BGLCSS 2.0 Raid Panel

81

- Ships to b ngoge Baid:

Figure 73: BGLCSS 2.0 Raid Ships Panel

DTG arget Sive.

f target
1 ong:

i Targel fype:

B AR A AR AR A A A A AN 3 A AR N8 SR KA A AR A SRR AR AR AAAS A N AA R SAR A AR XA RA ARSI A A AR AAKARRIREIAS

Figure 74: BGLCSS 2.0 Strike Panel

| §v /

QR AN ;W\-)&mmw O DABIANI N AL
® Z

Figure 76: BGLCSS 2.0 ASW Panel

83

b Uit Hlame

e Sefect Dvdnanes:

AR AAA AR AN AAAAAARRARAAR RS ARARA - e

E Chipantaty

N
i
|

[RCINNEN

Oeraup Mame,

E Selest Shipe

Figure 78: BGLCSS 2.0 Select BG Ship Panel

84

' Unit Fising

. Sekeat Adrerain
Figure 80: BGLCSS 2.0 Select Summary Report Panel

f Spred iy

A AAAAL AR S AR A ARAA AR RAR AL RANR SRS AR ARSA

: E)d":,’.‘i

H
i
H
:
H
:
H
H
H
1
H
H
H
:
H
;

Figure 82: BGLCSS 2.0 Commodity List Panel

86

¢ is displayed here

G

g««wxzm:maw&“ P S R e R

E

Figure 83: BGLCSS 2.0 BG Summary By Single Commodity Panel

Figure 84: BGLCSS 2.0 Battle Group Selection Message Panel

87

Figure 86: BGLCSS 2.0 Insufficient Data Message Panel

Figure 87: BGLCSS 2.0 Print Job Message Panel

88

Figure 88: BGLCSS 2.0 Incorrect DTG Format Message Panel

1 .m(«\m‘f.mm««mmmﬂx«m‘«\mmmx<«(«(m(mfm««onmmmvi

Figure 89: BGLCSS 2.0 Incorrect Lat/Long Format Message Panel

Figure 90: BGLCSS 2.0 Close All Events Panels Message Panel

89

Figure 91: BGLCSS 2.0 New BG Data Saved Message Panel

Figure 92: BGLCSS 2.0 Event List Panel

90

4 gwwxwaxmw/ | sitascaasccacs g gmmmm RIS

1 : :

Figure 94: BGLCSS 2.0 Overview Initial Panel

91

APPENDIX B. BGLCSS 2.0 C PROGRAM LISTING

Files Common to BGSetup and BGEvents modules:
bg.h

bg.c
BGEventsLib.h
BGEventsLib.c
global.h
pan_WptHelp.c
pan_WptHelp.h
wpthelp.c
wpthelp_creat_init.c
wpthelp_init_pan.c

Files Specific to BGSetup:
BGSetup.c
BGSetup_creat_init.c
BGSetup_init_pan.c
Imakefile
pan_BGData.c
pan_BGData.h
pan_BGShips.c
pan_BGShips.h
pan_CloseAll.c
pan_CloseAll.h
pan_DelBG.c
pan_DelBG.h
pan_Dtg.c
pan_Dtg.h
pan_LackData.c
pan_LackData.h
pan_NewBG.c
pan_NewBG.h
pan_SaveNewB.c
pan_SaveNewB.h
pan_SelBG.c
pan_SelBG.h
pan_SetUpBGs.c
pan_SetUpBGs.h
pan_Ship.c
pan_Ship.h

Files Specific to BGEvents module:
BGEvents.c

BGEvents_creat_init.c
BGEvents_init_pan.c

Imakefile

pan_BGCrsSpd.c

pan_BGCrsSpd.h

pan_BGEvents.c

pan_BGEvents.h

Files Specific to Overview module:
Overview.c

Overview_creat_init.c
Overview_init_pan.c

pan_Overview.c

Pan_Overview.h

92

/**********#********#****#*****************************#**********#

*Author Bemadette C. Brooks

*Office Computer Science Department

* Naval Postgraduate School

* Monterey., CA 93943

* Phone: (408) 656-2180

*Project

*Advisor Dr. C. Thomas Wu

* Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-3391

*Filename : bg.h

*Date : 27 Feb 93

*Contem : C manifests, data type definitions, and data

structure definitions for all of BGLCSS 2.0

"'Note : *“global.h” TAE-generated file includes bg.h
t#****#***************
*/
#include <stdio.h>

#include <stdlib.h>

#define MAXNAME 25

#define MAXF76COEF 3

#define MAXSHIPTYPES 8

#define MAXORD 100

#define MAXACFT 20

#define MAXTHREATLEVELS 2 /* Low, Medium, High */
#define MAXENGAGEMENTS 2 /* Raid, Strike, ASW */
#define MAXINTERVALS 3

#define HOURSINDAY 23
#define MAXUSETYPES 5
#define MAXBGSHIPS 30

#define MAXBGS 10

#define MAXORD 100

#define MAXSHIPS 100

#define DTGLENGTH 15

#define MAXLENGTH 25

#define FI6DATA “/hfbglcss/scripts/data/F76.dat”
#define BGDATA “fhfbglcss/scripts/data/BGData.dat”
#define BGSHIPS *M/bglcss/scripts/data/Ships™
#define NAVYSHIPS *“Mibglcss/scripts/data/NavyShips.dat™
#define EVENTSDATA “/hfbglcss/scripts/data/Events™
#define HEADERSDATA “/h/bglcss/scripts/data/Headers™

/**#**#*#t**ﬁ***#*t******************************#******‘***t*****tt/

enum CLFType {

Combatam
Siation,
Shuttle

|

typedef enum CLFType CLFType;

93

/***#**#**i*****#**t****/

enum AcftType {
Fl4,
FAIS,
A6,
EAGB,
E2

k
typedef enum AcftType AcftType:

JrRR SRRk R Rk ROk KRR KR KRR Aok KRR AR R KRR R Ak K

typedef struct {
int Capacity,
ReceiveRate,
TransferRate.
OnHand,
EstOnHand,

Dtg:
float CoefflMAXF76COEF];
}F76Info;

/************************#**/

typedef struct {
int Capacity,
ReceiveRate,
TransferRate,
OnHand,
EstOnHand,
Duig;
}F44Info;

/********#***#*i*********t/

typedef struct {

int Dtg;
float Speed,
MaxSpeed;
double Latitude,
Longitude,
Course;
}Locationlnfo;

/************************************t**********************************/

typedef struct |
int Quantity|MAXUSETYPES]:
}OrdUse;

/*#**t*****#****************##/

typedef struct {
char Name[MAXNAME];
}OrdName;

94

[R R R K kR sk R ok KKK R R R Ak Kk KR |

typedef struct {
OrdName Nam¢[MAXORDY];
int TotalNumber,
Capacity[MAXORD)],
Range[MAXORD)],
TransferRate[MAXORD)],
OnHand[MAXORD],
EstOnHand[MAXORD],
OnHandDtg[MAXORD],
EstOnHandDtg[MAXORDI;
OrdUse UseRatefMAXORD];
}OrdInfo;

/***/

typedef struct {

AcftType AType:
int NumberAcft,
FuelBurnedSortie.
MaxSortiesDay:
int SortieRate[MAXTHREATLEVELS]:
int NumSortiesst MAXENGAGEMENTS];
}AcftRecord;

/*#**#**#*************************/

typedef struct {
int SortieFlown[HOURSINDAY1:
AcftRecord Wing[MAXACFT];

} Acftinfo;

/******************t************t*********!***************************#*/

typedef struct {

char Name[40];

char Hull{10];

CLFType TypeCombatant;

Locationlnfo Location;

F76Info F76;

F44Info F44,

int Approach,
BreakAway;

Ordinfo Ord;

Acfilnfo Acft;

} Shipinfo;

/****#*****t***********#**#*#*************#******#*t******t#*#**********/

typedef struct {
char ShipType([10];
int F76Capacity,
F76Receive,
F76Transfer,
float Coef[MAXF76COEF];
}F76ShipTypelnfo;

95

/******************#**#****t*t********#****************t*****#**t*t*t***/

typedef struct {
float FuelRes.
CLFFuelRes,
OrdRes,
CLFOrdRes,
MaxF76,
MaxF44,
StationSpeed.
UnrepSpeed.
AcftShipSpeed:
int PredictStart:
int PredictHours{ MAXINTERV ALS}:
}Settingsinfo;

/**************************i**************************#*********************/

typedef struct{
int TotalNumber;
}OrdCaplnfo;

/***************************************##************t#***t*tt******t**t*#*/

typedef struct{
float F76Capacity{! 1AXINTERVALS],
F44Capacity[MAXINTERVALS}:
OrdCaplnfo OrdCapacity[MAXINTERVALS]:
}CapacityInfo;

/***********************************t*************************t**tt*k**#*t**/

typedef struct {
char Name[MAXNAME]:
char Designation{l MAXNAME];
Settingsinfo Settings;
LocationInfo Location;
Shiplnfo Ships[MAXBGSHIPS};
Capacitylnfo Resultsi MAXBGSHIPS];
}BGlInfo;

/**********#**t****t****#***********/

96

/**t‘****#******t*t***&#**#***#****t******************#****t#***t#t
*Author Bemadette C. Brooks

*Office . Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-2180

*Project

*Advisor : Dr. C. Thomas Wu

* Computer Science Department

* Nava: Postgraduate School

* Monterey, CA 93943

* Phonc: (408) 656-3391

*Filename : bg.c

*Date : 27 Feb 93

*Content Bodies of user-defined functions to represent battle
* groups and ships. C manifests contained in bg.h
*Note : “global.h™ TAE-generated file includes bg.h

e 2 2 e 2k e 3 30 2k s e e e 3 3 s 2k sk afe o 2k sk e 3k o ok e e ok 3 ke ek ke ke sk e i s e ofe s e sl e e 3K e e e e o e e ek ok ek ok

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

/*TAE system include files*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “parblk.inc”
#include “terminc.inc”
#include “global.h™

/*#******#t***t****#*******-*!*4##*******##**********t*t**#*

* Convert an integer to the appropriate string representation of

* TypeCombatant. C stores the value of an enumerated type in an

* ASCII file as an integer. To display this value in a panel, it must be

* converted to a string,.

e 20 3k 30 o o ok o ol e e ke ke ol i o ok e sl e ok i e ok e 3 ke a3k ok e aie ok e ol e 2 ik ko e ok ook ok bk ok ko ko ok Kok

*/

char* ConvertTypeCombatant (Integer)
int Integer:

{
char TempStringlMAXNAME];

switch (Integer) {

case :
strcpy(TempString, “Aviation™);
break;

case I:
strepy(TempString, “Combatant™);
break:

case 2:
strepy(TempString, “"Station CLF™);
break;

case 3:
strepy(TempString, “Shuttle™):
break;

default:

97

strcpy(TempString, “unknown”);

retum(TempString);
}

/***********************t***********************************

* Convert an integer to its appropriate string representation.
* UNIX K & R C library does not contain this kind of function.
* DOS C does. It is needed for 1/O to the ASCII text files containing

* ship. battle group. and event information.
a0 3k 3 2 2 2k 3 2 e 2 s 3 2k e ke 3 3 ek e ok e ok K e 3k ok ek ok 3k dk ke ke koo A6 e o e sk e ok ok koo dk ok ok ok ok

*

char* IntToString(i)
int,

{

switch(i)
case O:

return(*0"); break:
case 1:

return(**17); break;
case 2:

return(“2"); break;
case 3:

retun(“3"); break:
case 4;

return(“*4”); break;
case S:

return(**5”); break;
case F:

return(**6™); break;
case 7:

return(*7”); break:
case 8:

return(*‘8™); break:
case 9:

return(**9”); break:
case 10:

return(**10"); break;
default:

return(**117);

!
}

/********#*****t*************************#******************

* Using the string of a ship name and the index to the appropriate battie
* group. GetShip retumns the ship index for the appropniate ship.
e e ok ke e e ke sk e 3 s aje ok ok e ok 3 e 3 e i sk sk ok R e e ok ok e ke 3k 3k e e e e i ok 3K ke o sk e 3 3 ol 3k 3k ke sk ok ok ok ok K kok

*/

int GetShip(Name, 1)

char Name[MAXNAME]:

int K

{
char FileName[80];
FILE* DataFile;
char SuffixiMAXNAME|;
TEXT* temp[MAXBGS):
char Cmd[MAXNAME];
int s

char buf[10];

98

int Found;

strepy(FileName, BGSHIPS),

strepy(Suffix IntToString(i));

strcat(Suffix. “.dat™),

strcat(FileName, Suffix);

DataFile = fopen(FileName, “r”);

while (!feof(DataFile)){
fscanf(DataFile,”%[™n\n", Cmd);

s=0;

/*skip over all ship info*/

for (s =0; s < 13; s++){
fscanf(DataFile,”%s\n", buf);

}

if (stremp(Name.Cmd) == 0){
Found = 1;
} elsef

}

i++;
}
fclose(DataFile);
if (Found == 0){
return(-1);

jelse{

}

return(i);

/t*t**t******t##t*#*#***#i##****##**ttt****#**t**#*ﬁ******#*

* This function uses TAE functions to display values to the Ship panel.

e e e e o e o e sl e oo ol s ofe el afe e ok i sk e o o e sk e o ok ok ok ol i ke s ol ok s g ok ok ok ok okl ok okok

*/

void ShowShip(PanelView, Panelld. BGs. i. s)

Id

BGinfo
int

{

PanelView,
Panelld;
_BGs[MAXBGS]:
1,

s;

TEXT* name[l]:
TEXT* huli{l];

strcpy(name([0],BGs[i].Ships(s].Name);
Vm_SetString(PanelView,”ShipName.textstrs”,1,name P_UPDATE);
Wpt_ViewUpdate(Panelld,”ShipName™, PaneiView, ShipName™);

strepy(hull[0],BGsli].Ships{s).Hull);

Vm_SetString(PanelView, "Hull.textstrs”, 1 ,hull P_UPDATE);
Wpt_ViewUpdate(Panelld,"Hull”, PanelView, "Hull);

99

strcpy(name[0] BGs{i].Name);
Vm_SetString(PanelView,"BGName.textstrs”,1,name P_UPDATE);
Wpt_ViewUpdate(Panelld,"BGName™”, PanelView.,"BGName™);

strcpy(name[0],
ConvertTypeCombatant(BGs[i].Ships|[s]. TypeCombatant));

Vm_SetString

(PanelView, TypeCombatant.textstrs™,1,name.,P_UPDATE);
Wpt_ViewUpdate(Panelld, TypeCombatant™,
PanelView,"TypeCombatant™);

strepy(name(0)].dig_to_a(BGsli].Ships{s).Location.Dtg)):
Vm_SetString(PanelView, " Dtg.textstrs”.1,name P_UPDATE):
Wpt_ViewUpdate(Panelld,"Dtg”, PanelView,”Dtg”),

Wpt_Setintg(Panelld, “Approach™, 20);
Wpt_SetIntg(Panelld, “Break Away”,10);

}

/******#*******#**

* This function uses TAE functions to display values to the Ship panel
ke 28 3 3 2k s 5k e 3 3k 2 3 3 3 2 2 e o o e e e afe 2 e o o e e e e Ak e e ek 3k ok o e 2ok ok e ook e ok ko ok e ok 3k

*/

void ShowF76 (BGs, i, s, Panelld, PanelView)
BGInfo BGs[MAXBGS];

int 1;

int S;
Id Panelld,
PanelView;

{
TEXT* name[l};
TEXT* estonhand[1];
TEXT* estdtg[1];

strcpy(name[0], BGs[i].Ships[s].Name):

Vm_SetString(PanelView, “Name.textstrs”, 1, name, P_UPDATE);
Wpt_ViewUpdate(Panelld, “Name”, PanelView, “Name™);

Wpt_Setintg(Panelid, “OnHand”, BGs[i].Ships{s].F76.0nHand);
Wpt_Setlntg(Panelld, “Capacity”, BGs{i].Ships(s].F76.Capacity):

/*not implemented yet*/
/*Vm_SetString(PanelView, “EstOnHand.textstrs”, 1,
estonhand, P_UPDATE);

Wpt_ViewUpdate(Panelld, “EstOnHand™. PanelView, “EstOnHand™);*/

/*need to convert date integer to string representations first*/
/*not implemented yet*/

/*Vm_SetString(PanelView, “EstDtg.textstrs™, 1, estdtg, P_UPDATE);

“/lpl_ViewUpdale(Panelld. “EstDtg”, PanelView, “EstDtg™);
x

/*not implemented yet*/
/*Wpt_Setintg(Panelld, “ReceiveRate”,
BGsli].Ships[s].F76.ReceiveRate);
Wpt_Setintg(Panelld.

100

“TransferRate” BGs|[i].Ships{s].F76.TransferRate);

*/

/**i*******

* Using the BG array and the index to the specific battle group, this

* function saves the battle group’s ships’ data to an ASCII text file.
e e 3 2 ok e 3k 2k ok ak 3 3k 3k ok e e e e e a3k 2k 3 sk ok ke 3 ok 3 3k ok ok e 3k e 3k o 3 3 ok 3 3k 3 2 e ok 3k ek 3k e 2 o ek e ok

*/

void SaveBGShips(BGs,i)
BGInfo BGs[MAXBGS].

int 1

{
char
char
static
FILE*
int
int
static

s= 0

FileName[100];
Suffix MAXNAME]:
blank[MAXNAME];
DataFile;

S;
Index;

char Cmd[100];

/*Based on BG Index, create appropriate file name for BG ships. Ex:
For ships in BGs{0], filename is /h/bglcss/scripts/data/Ships0.dat*/

strepy(FileName, BGSHIPS);
strepy(Suffix, IntToString(i)),
strcat(Suffix, *“.dat”);
strcat(FileName, Suffix);

[*use system call to remove previous file*/
strcpy(Cmd, “rm *);

strcat(Cmd, FileName);

system(Cmd);

DataFile = fopen (FileName, “w™);
/*Fill in F76 Table for ships by type*/

/*Read in Shiplnfo for ships in this BG from appropriate file*/
while(s < MAXBGS){

if(stremp(BGs(i].Ships[s].Name blank) != 0){
fprintf(DataFile, “%s\n", BGs{i].Ships{s].Name);
fprintf(DataFile, “%s\n”, BGsli}.Ships{s].Hull);
fprintf(DataFile, “7d\n”,

BGsli].Ships{s]. TypeCombatant);

fprintf(DataFile, “%d\n",
BGsl[i].Ships[s].Location.Dtg);

fprintf(DataFile, “%.3f\n"",
BGsli).Ships[s].Location.Speed).

fprintf(DataFile, “%.3f\n",
BGsf[i].Ships[s].Location.MaxSpeed);

fprintf(DataFile, “%.31f\n",
BGsli).Ships[s].Location.Latitude);

101

}

S++;
}
fclose(DataFile);

}

fprintf(DataFile, “%.31f\n",
BGsli).Ships{s].Location.Longitude);

fprintf(DataFile, “%.31f\n",
BGsli].Ships[s].Location.Course);

fprintf(DataFile, “%d\n”,
BGsli].Ships{s].F76.0nHand);

fprintf(DataFile, “%dwW",
BGsfi].Ships[s].F76.EstOnHand);

fprintf(DataFile, “%d\n", BGs{i].Ships[s].F76.Dtg);
/*F441Info here; not implemented yet*/

fprintf(DataFile, “%d\n", BGs[i].Ships{s].Approach);
fprintf(DataFile, “%d\", BGs[i].Ships[s].BreakAway);

/*OrdInfo here; not implemented yet*/

/*Acftinfo here; not implemented yet*/

ke 3k s 3 a8 b 3k 2k 3 e 2fe b e 3 e 2 3 e e e 2k e 2k e e e 3 e A 3k 3 ok 3 o A ek 3 e e e ek ke ke 3k e A o e e ok ke 3 ok ok

* Get the F76 information by ship type from the ASCII text file into

* memory.

28 o k¢ 3 2k 3 sk e s e e e e 3 2k 2k ok e e 3 ke e a8 3 3 2 e A sl 33k sk e e 2 afe e afe e ok e e e s 3 3 ok ke e ok s 3k o e ok

*

void GetF76Table(Table)

F76ShipTypelnfo Table[MAXSHIPTY PES];
{
FILE* DataFile;

int i=0;

DataFile = fopen(FT6DATA, “r");

while (!feof(DataFile)) {

fscanf(DataFile, “%s”, Table[i).ShipType);
fscanf(DataFile, “%d”, &Table{i].F76Capacity);
fscanf(DataFile, “%d”, &Table[i]l.F76Receive);
fscanf(DataFile, “%d”, &Table[i).F76Transfer);
fscanf(DataFile, “%f", &Table(i).Coef{0));
fscanf(DataFile, “%f”, &Table[i].Coef[1]);
fscanf(DataFile, *%f\n” & Table[i].Coef{2]);

i++;

fclose(DataFile);

102

/**t****#*****
* Get the battle group ships from the ship data ASCII text file and the
* F76 information by ship type from memory. The next ship index available

* is returned as an integer.
a5 2 3 afe 3k 3k 6 2 e 2 2 e 2k 3 3k 3 o 2 2 e o 3 o a2k 3 2 e ok 3l ok s e e ok ok 2 3k e s sk s sk ol e o de ol ke ok o ok ok o ok ok akok ook

*/
int GetBGShips(BGs,i. F76Table)

BGlInfo BGs[MAXBGS];
int i;
F76ShipTypelnfo F76Table[MAXSHIPTYPES];
{

char FileName[100];

char Suffix[MAXNAME];

static char blank[MAXNAME];

FILE* DataFile;

int S;

int Index;

s=0;

/*Based on BG Index, create appropriate file name for BG ships. Ex:
For ships in BGs[0], filename is /h/bglcss/scripts/data/Ships0.dat*/

strcpy(FileName, BGSHIPS);
strepy(Suffix IntToString(i));
strcat(Suffix, “.dat™);
strcat(FileName, Suffix);
DataFile = fopen (FileName, “r");

/*Read in ShipInfo for ships in this BG from appropriate file*/
while(!feof(DataFile)){

fscanf(DataFile, “%[{"\n\n" ,BGs][i].Ships[s).Name):
fscanf(DataFile, “%s\n”, BGs[i].Ships{s].Hull);

Index = TypeShip(BGsli].Ships{s].Hull);

BGsli).Ships{s].F76.Capacity = =F76Table[Index].F76Capacity;
BGs|i].Ships[s].F76.ReceiveRate=

F76Table[Index].F76Receive;
BGsli].Ships{s].F76.TransferRate=
F76Table[Index).F76Transfer,

BGslil.Ships[s}.F76.Coef[0] = F76Table[{Index].Coef[0]:
BGs[i].Ships[s].F76.Coeff1] = F76Table[Index].Coef]1];
BGs[i).Ships{s].F76.Coef{2] = F76Table[Index].Coef[2];

fscanf(DataFile, “%d\n", &BGsli].Ships[s]).TypeCombatant);
fscanf(DataFile, “%d\n", &BGsli).Ships{s].Location.Dtg);
fscanf(DataFile, “%f\n”, &BGs{i].Ships[s].Location.Speed);
fscanf(DataFile, “%f\n”, &BGsli].Ships(s].Location.MaxSpeed):
fscanf(DataFile, “%If\n”, &BGs(i).Ships[s].Location.Latitude);
fscanf(DataFile, “%If\n”, &BGs[i].Ships[s].Location.Longitude);
fscanf(DataFile, “%lf\n”, &BGs[i].Ships(s].Location.Course):

/*Read in last current F76 states*/

fscanf(DataFile, “%d\n", &BGs[i).Ships[s].F76.0nHand);
fscanf(DataFile, “%d\n", &BGs[i].Ships[s].F76.EstOnHand);
fscanf(DataFile, “%d\n”, &BGs(i}.Ships(s].F76.Dtg);

103

/*F44Info here; not implemented yet*/

fscanf(DataFile, “%d\n", & BGsli].Ships[s].Approach);
fscanf(DataFile, “%d\n”, &BGs[i].Ships{s].Break Away);

/*OrdInfo here; not implemented yet*/

/*Acftinfo here; not implemented yet*/
S++;

}
fclose(DataFile);
} return(s);

/**********************************t****************************#**

* Make a new battle group, using information provided by user to New BG
* Panel. The index for the next available battle group in the array is

* returned.
3k 3 35 2 3¢ 3k 2Kk ke 3¢ e e 3k 3¢ 3k 3 3 3k 3 3 e 3 e afe 3k e 2k 3k e e 2 2k 35 e sk sk 3k K e e 3k 3k ok o 3 e ek e e e e 3 e 3k e ofe e e sk o ok 3k ok ok

*/
int MakeBG(BGs,i,Name,Desg,FRes,CRes.ORes.CORes, F76.F44,SSpeed,

USpeed,ASSpeed)
BGlInfo BGs[MAXBGS];
int i
char Name[MAXNAME];
char Desg[MAXNAME];
float FRes, CRes, ORes, CORes,

F76, F44, SSpeed, USpeed, ASSpeed:

if (Name && Desg & & FRes && CRes && ORes && CORes
&& F76 && F44 && SSpeed & & USpeed && ASSpeed) {

{

strcpy(BGs[i].Name, Name);
strepy(BGsli). Designation, Desg);

BGsli}.Settings.FuelRes = FRes;
BGs]i].Settings.CLFFuelRes = CRes;
BGs|i].Settings.OrdRes = ORes;
BGsli}.Settings.CLFOrdRes = CORes;
BGsi}.Settings. MaxF76 =F76;
BGsli).Settings. MaxF44 =F44,
BGsli).Settings.StationSpeed = SSpeed;
BGs]i].Settings.UnrepSpeed = SSpeed;
BGsli].Settings. AcftShipSpeed = ASSpeed,
i++;
return (1);

} else
return (0);

104

/********#****************#*************#*********************#**##**#******

* Save all battie groups to the ASCII text file containing BG data.

2 e e e o 2k 8 3 3 o0 3 o o ok e o ko ok e ko o o ool ol o e 3 o ol afe o 3 o ool o e e ok e o o ok ok o ok o ko e o e o ol ke kol o ek o okok ok ok

*/

void SaveBGs(BGs)

BGInfo BGS[MAXBGS];

{
FILE* DataFile;
int i=0;
static char blank[MAXNAME];
DataFile = fopen(BGDATA., “w™);
while (i < MAXBGS){

if (stremp(BGs[i].Name, blank) != 0){
fprintf(DataFile,”%s\n”, BGs[i].Name);
fprintf(DataFile,”%s\n”, BGs[i].Designation);
fprintf(DataFile,” %. 1f\n” BGs[i].Settings.FuelRes);
fprintf(DataFile.”%.1f\n” ,BGsl[i].Settings.CLFFuelRes);
fprintf(DataFile,”%. 1f\n" ,BGsl[i).Settings.OrdRes);
fprintf(DataFile,” %.1f\n",BGsli].Settings.CLFOrdRes);
fprintf(DataFile.”%.1f\n” ,BGsl[i].Settings.MaxF76);
fprintf(DataFile,”%.1f\n” ,BGsl[i].Settings.MaxF44);
fprintf(DataFile,” %.1f\n” BGsli).Settings.StationSpeed);
fprintf(DataFile,”%.1f\n” BGsli].Settings.UnrepSpeed):
fprimf(DataFile,”%.1f\n",
BGsli].Settings. AcftShipSpeed);

}

i++;

}
fclose(DataFile);
]

/***#*#**

* Show list of battle group ships, given battle group index, panel name,

* and selection list item on panel.
e e e e e s 3 o e s e e e 3 2k o s e e e 3 o 3 e 3 3 ke e 3k s s ok e ol ek s ok 3 ok 2k 3 sk o e ek ok o ok e ek K 3ok ok

*/

void ShowBGShips(i, Panel, ItemName)

int i

Id Panel,

char ItemNamef(15];

{
char FileName([80];
FILE* DataFile;
char Suffix MAXNAME];
TEXT* temp[MAXBGS];
char Cmd{[MAXNAME];
char buff[10];
TAEINT a,z
static char blank[MAXNAME];
a=0;

/*Based on BG Index, get the appropriate file name for BG ships. Ex:
For ships in BGs{0], filename is /h/bglcss/scripts/data/Ships0.dat*/
strcpy(FileName, BGSHIPS);

strcpy(Suffix, IntToString(i)):

strcat(Suffix, *.dat™y;

105

strcat(FileName, Suffix);
DataFile = fopen(FileName, “r");

while (}feof(DataFile)){
fscanf(DataFile,”%{™n]\n", &Cmd[0});
z=0;

/*skip over data until reach ship name*/
for (z=0; z < 13; z++){
fscanf(DataFile,”%["™\n]\n", &buff]0]);

}

templa]=(TEXT *) malloc(strlen(Cmd)+1);
strcpy(temp(a], Cmd);

a++;

}
fclose(DataFile);

Wpt_SetStringConstraints(Panel ItemName,a.temp);
}
/***

* Show battle group data given battie group array, index,and panel name.
e 2fc 29 e 26 e 3 ke e 0k 2 e e ke 3k 3 3k e ke e e e e e ke e B ke e e ke e e ke ok ke 3 e e ok e 5 e ke e e e e e 3k e o e 3k e 3 ok ok sk

*/
void ShowBG(BGs, i, Panel)

BGInfo BGs[MAXBGS]J;

int 1

Id Panel;

{
Wpt_SetString(Panel, “Name”, BGs{i].Name});
Wpt_SetString(Panel, “Designation”, BGsJi].Designation);
Wpt_SetReal(Panel, “FuelRes”, BGsli].Settings.FuelRes);
Wpt_SetReal(Panel, “CLFFuelRes”, BGs]i].Settings.CLFFuelRes);
Wpt_SetReal(Panel, “OrdRes”, BGsli].Settings.OrdRes);
Wpt_SetReal(Panel, “CLFOrdRes”, BGsli].Settings.CLFOrdRes);
Wpt_SetReal(Panel, “MaxF76”, BGsli).Settings.MaxF76);
Wpt_SetReal(Panel, “MaxF44", BGsl[i].Settings.MaxF44),
Wpt_SetReal(Panel, “StationSpeed”, BGs(i].Settings.StationSpeed);
Wpt_SetReal(Panel, “UnrepSpeed”, BGs]i].Settings.UnrepSpeed);
Wpt_SetReal(Panel, “AcftShipSpeed”, BGsli).Settings. AcftShipSpeed);

}

/***

* Show list of navy ships from ASCII text file to item in panel.
e 38 e 2 e 2 e e 2k 2 e o e ok e e e sje s 2 2k e e 3 3k e e 3 ok 2 3 3 e e e e e 3l ke ok 3 e e e e ek e ok e e e e e e 3K ok

*/

void ShowNavyShips(Panel, ItemName)

Id Panel;

char ItemName[15];

{
TEXT* temp[MAXBGS]:
FILE* DataFile;
char Cmd[MAXNAME];
TAEINT a;

106

a=0;

DataFile = fopen(NAVYSHIPS, “1”);

while (!feof(DataFile)){
fscanf(DataFile,”%["n\n", &Cmd{0});
templaj=(TEXT *) malloc(strlen(Cmnd)+1);
strepy(templa), Cmd);
a++;

%th_SetSuingConstraints(Panel, ItemName,a temp);

fclose(DataFile);

/**********#**

* Show list of battle groups from ASCII text file to item in panel.
ahe ke 3k e e 2 3 e e e e e 3k e e 3 2k e ke ke e e 3k e ok e e 3 e e e e 3k A e ok A e e e ke 3 e e e ke Ak e ok e 3k ok ok ok ok

*/

void ShowBGs(Panel ItemName)

Id Panel,

?har ItemName[15];
TEXT* temp[MAXBGSI:;
FILE* DataFile;
char Cmd[MAXNAME];
char buff{10];
TAEINT i

a L
static char blank[MAXNAME];
a=0;
DataFile = fopen(BGDATA, “r”);

while (!feof(DataFile)){
fscanf(DataFile,”%[™\n\n", &Cmd[0));
i=0;
for (i = 0; 1< 10; i++){
fscanf(DataFile,”%["n\n". &buffl0]);

}
if (strcmp(Cmd,blank) != 0){
templa]=(TEXT *) malloc(strlen(Cmd)+1);
strcpy(temp([a], Cmd);
a++;
} }
Wpt_SetStringConstraints(Panel, ItemName ,a, temp);
fclose(DataFile);

107

/***#*******i***t***

* Save new battle group using Id Target from user input panel. First,
* GetBGs is called, returning the available index to the array. Next,
* Make BG is called and then SaveBGS saves all battle groups.

¢ 3 2 2 3 3 2 e 3¢ 3 s e e e ok o e e ke sk ok 3 e 3k o Sk e e o e e e 3 2k e 2 ke e e e e ok 2 s e 2 e ek o ook sk ok ok ok

*/

int SaveNewBG(Target)

Id Target;

{
BGInfo BGs{MAXBGS];
int BGlIndex:

BGindex = GetBGs(BGs);

if (MakeBG(BGs,BGIndex StringParm(Target,”"Name™),
StringParm(Target.”Designation™),

RealParm (Target, FuelRes™).
RealParm (Target,”CLFFuelRes™),
RealParm (Target,”OrdRes™),
RealParm (Target,”"CLFOrdRes"™),
RealParm (Target,”MaxF76™),
RealParm (Target,”"MaxF44™),
RealParm (Target,”StationSpeed™),
RealParm (Target.”UnrepSpeed™),
RealParm (Target,” AcftShipSpeed™))) {

SaveBGs(BGs);
return(1);

} else {
return(0);

}

/****************************#******************************

* This function merely wipes out the contents of a battle group panel.
e 2 2 3 2k 2 2k 2 2 2k sk 2k 3k 3k ke 3k 3¢ 2 ke 3k e ke e s ke 3k 3 3k e e sk e 3k ke e ek G e e sk e e ok ale e ke 3l o e e 3 e e s sk ek

*/

void CancelBG(Panel)

I1d Panel;

{
Wpt_SetNoValue(Panel,”"Name”);
Wpt_SetNoValue(Panel,”Designation™);
Wpt_SetNoValue(Panel.”FuelRes™);
Wpt_SetNoValue(Panel,”CLFFuelRes™);
Wpt_SetNoValue(Panel,”OrdRes”);
Wpt_SetNoValue(Panel,”CLFOrdRes™);
Wpt_SetNoValue(Panel,"MaxF76™);
Wpt_SetNoValue(Panel,”MaxF44™);
Wpt_SetNoValue(Panel,”StationSpeed™);
Wpt_SetNoValue(Panel,”UnrepSpeed™),
Wpt_SetNoValue(Panel,” AcftShipSpeed™);
Wpt_SetNoValue(Panel,”BGShips™),

108

/***#

* Using the string representation of the name of a battle group and the

* index to the appropnate battle group in the array, return the index to

* the battle group.

3 2 o ok o o e o ok e o 3k sk o ok s ok s ol sl ol e o o ok ok ok 3 ek s s e ok ok ol ok e ke o ok ok oo o ok ok ke ek e ok ok ok

*/

int GetBG(Name, BGIndex)
char Name[MAXNAME];
int BGiIndex;
{
FILE* DaaFile;
int 1.s;

char Cmd[MAXNAME];
char buffMAXNAME];

int Found:
Found = 0;
i=0;,

DataFile = fopen(BGDATA, ‘1),
while ((!feof(DataFile)) & & (Found == 0)){

fscanf(DataFile,”%{™n\n", &Cmd[0]);
s=0;

for (s =0; s < 10; s++){
fscanf(DataFile,”%s\n”, &buf[0]);
}

if (stmmp(Name,Cmd) 1= 0){
i++;
} else{

}

Found = 1;

}
fclose(DataFile);

if (Found == 0){
return(BGIndex);
} else {
return(i);

}

/**********t*******************************#************t****

* This deletes the battle group from the array by removing its name,
* The name is replaced by blank spaces.

24 3 25 2 sl e sk ok 2k 3 s 3 2k 3 3 3 e e 3K ok 2 s 2k afe 3k 3k sk s s 3 2k 3k e 2k 2k 3 sk 3 3 3 3K e 2 3 e 3l 2 3 236 3 2 3K 3 sk e ok e ke K

*/

void DeleteBG(BGs. i)
BGInfo BGs[MAXBGS];
int i;
{
static char blank[MAXNAME];
if (i 1= -1}
strcpy(BGs[i].Name.blank);

109

}

ek ok 3 3 2k sfe S e s e 2 20 e 6 e e 2k e 2 e e 3 3 2 K e 2 e 3 e ok 2 3 R ok ok ok e e sk e ek ok ke ke kK ok ks okookokok %k ok

* This function checks the first two characters in a ship’s hull number

* and returns an integer that equates to an enumerated ship type.
8¢ ok e 2 3 2 3k 2 afc 2k e 2k 3 2 3 e 3 ok e e e ok 3 e e s 3k e sk b e 3 3k o 3 e 2 s s e ke ke e 3k 2k ok 3 2 3k 3 3 ok ok ek ok o K ok

*/

int TypeShip(String)
char String[40};
{
int S;
char Slice[40];

strepy(Slice, String);
Slice[2]=0;

if (stremp(Slice, “DD™) = 0) {
return (3);

} else if (strcmp(Slice, “AO™) == 0) {
return (6);

}

}

/*************************#*****************#***************#****

* This function adds a ship and its data to a battle group.

* The ship list presented to the user contains both the hull number

* and the ship name. The hull number is required to get the ship type for

* the appropriate F76 information. The ship name is returned.

2k 3¢ 3¢ e 2 de e 2 3k ke e 3 e ok e e 4¢3 e e e e e e e 2k 2 e s e e e e o e g e 2k e 3 e ke ok ok 3K e 3 3k e e e e e ek o e ek kol dk

*/

char* AddShip (BGs. i, s, ShipString)
BGInfo BGs[MAXBGS];

int i,s:

char* ShipString;

{

int Index;

F76ShipTypelnfo F76Table[MAXSHIPTYPES]:
char* MyString;

char* HullString;

char* NameString;

MyString = strdup(ShipString):

HullString = strtok(ShipString,” **);
NameString = strstr(MyString,"USS™);
strepy(BGsl[i].Ships[s]).Name, NameString);
strcpy(BGs[i].Ships[s].Hull, HullString);
Index = TypeShip(HullString);

if (Index == 3){
BGs][i].Ships{s]. TypeCombatant = 1;
}

110

GetF76Table(F76Table);

BGs(i].Ships[s].F76.Capacity
B(;[i).Ships{s]).F76.0nHand

P ss[i].Ships{s].F76.EstOnHand
LGs]i).Ships[s).F76.Dtg

BGs[i].Ships[s].F76.ReceiveRate
BGsli].Ships[s].F76.TransferRate

BGsli].Ships{s].F76.Coef[0]
BGsfi].Ships{s].F76.Coef[1]
BGs(i}.Ships[s].F76.Coef[2]

BGs(i].Ships[s].Location.Dtg
BGsli).Ships[s].Location.Speed

BGsli).Ships[sj.Locaiion.MaxSpeed

BGsli].Ships[s].Location.Latitude

BGsl[i].Ships[s].Location.Longitude

return((char*)ShipString):
}

= F76Table[Index].F76Capacity;
= BGs(i].Ships[s].F76.Capacity:
= BGs]i].Ships[s].F76.Capacity;
= current_time();

= F76Table[Index].F76Receive;
= F76Table[Index].F76Transfer:

= F76Table[Index].Coef[0];
= F76Table|Index].Coef[1];
= F76Table{Index].Coef[2];
= curreni_time();

0.
0.
0.
0.

1
*
*
)

SO0

ke e o sk e 3 e o sk e e o e sk o 30 3 e o s ke s 3k 2 2o e ol g o o ok ok ofe o ook ok ok ke ok e ke ol e ok ool 3k ok ok ke ok ok e ok ok

* Given the battle group array. this function gets the battle group data
* from the battle group data ASCII text file. Returns the next available

* battle group index.

a3 sk 3 ke ofe e 2 e 2 e ool e 3 e e o e e 3 s e ok ke 2 3 ol ok ok o e S e ek ol e ok K 3k ok ke o & oK e akok ok ok akokox

*/

int GetBGs(BGs)
BGInfo BGs{MAXBGS];

{
FILE* DataFile;
int i=0;

system (“cp SBGLCSS/data/BGData.dat $BGLCSS/data/BGData.dat.bak™);

DataFile = fopen(BGDATA, “r”);
while (!feof(DataFile)) {

fscanf(DataFile, “%["\n\n",
fscanf(DataFile, “%["\n]\n"".

fscanf(DataFile, “%f\n",
fscanf(DataFile. “%f\n",
fscanf(DataFile. “%f\n",
fscanf(DataFile, “%f\n",
fscanf(DataFile, “%f\n",
fscanf(DataFile, “%f\n",
fscanf(DataFile, “%f\n".
fscanf(DataFile. “%f\n”,
fscanf(DataFile, *"%f\n”,
1++;

]
fclose(DataFile);
return(i);

)

/*tt*****'#**t*#ﬁ*#****#****‘#i***tt******#*t**t*t#*t#t**#**‘*#t**#*t*t#t*t#/

111

BGs|1].Name);

BGs(i].Designation);
&BGs(i].Settings.FuelRes);
&BGsli).Settings. CLFFuelRes);
&BGs(i}.Settings.OrdRes);
&BGsii].Settings.CLFOrdRes):
&BGsli).Settings. MaxF76);
&BGs[i].Settings. MaxF44);
&BGsli).Settings.StationSpe d);
&BGsfi).Settings.UnrepSpeed);
&BGsli].Settings. AcftShipSpeed).

/***********#**
*Author Bernadette C. Brooks

*Office Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-2180

*Project

*Advisor Dr. C. Thomas Wu

* Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-3391

*Filename : BGEventsLib.h

*Date : 27 Feb 93

*Content C manifests, data type definitions, and data
* structure definitions

*Note : “global.h™ TAE-generated file includes bg.h

¢ 39 3 2 de e sk e e e e e e e 3¢ 3 e e e 2be 2 e e e e e 3 2 3 e e e e e 33 e e A e e e e e e e b sk e e 2 b e s e e ke e e ook ok ok ok
*/

#include <stdio.h>
#include <stdlib.h>

/***/

enum ThreatType (

Low,
Med,
High,
Raid,
Strike,
Asw,
NoThreat

b
typedef enum ThreatType ThreatType;

/***************************************#*******************************/

enum CalcType {
Ord,
F76.
F44,
BothFuel,
All

k

typedef enum CalcType CalcType:

112

/#**t******‘*#*#*****&********t#t********#t#****************t*******#*#*l

enum TargetSize {
Small,
Medium,
Large

b

typedef enum TargetSize TargetSize;

/***#*********t#******#***#***/

enum StrikeType {
SAirOnly,
SAirSurface,
SSurfaceOnly,
LAirOnly,
LAirSurface.
LSurfaceOnly
)
typedef enum StrikeType StrikeType:
/***t****t*****#***!********t**#t*****t**************************#*#****/
enum RaidType {
SNA,

SLCM,
TACAIR

b
typedef enum RaidType RaidType;
/#**t***#t********#‘**#***#*********##t**************t***##*#***#*******/
enum TactcType |

ServiceStation,

DeliveryBoy,

CircuitRider,

Vertrep
}:
typedef enum TacticType TacticType;

/t***t‘##*#‘***###***##******#t**#t***#********##******#*t**#***#**t*##*/

typedef struct {

OrdName Name;
int Quantity:
}jOrdAmounts;

/**tt‘#‘t#tt*#t#**‘ﬂ##*****t#*****t***#***t*t#**#**#****t##*#**ttt*tti*#/

typedef struct {
int NumberofWepaons;
OrdAmounts WeaponsUse[MAXORDY:
}RaidOrd;

113

/********************************t********************t*****************/

typedef struct {

int DelShip,
RecShipl,
RecShip2;
TacticType Tactic;
double Latitude,
Longitude;
}Unreplnfo;

/**#/

typedef struct {

int Shiplnvolved;
double Course:
double Speed;

) DirectionInfo;

/***/

typedef struct |

int Shiplnvolved;

int TotalNumber;

TargetSize Size;

StrikeType AttackProfile;

double Latitude,

Longitude;

OrdAmounts StrikeOrdUse[MAXORD];

} Strikelnfo;

/***#*****#**t*********t******i*/

typedef struct {

RaidType AttackProfile;
int Size,
ThreatAxis,
NumberofShips;
int Shipsinvolved[MAXSHIPS|;
RaidOrd ShipUse[MAXSHIPS];
}RaidInfo;

/#*********************************#******t*****t#**t#t*###tt###tt##t*it/

typedef struct {

int Shipinvolved:
OrdAmounts WeaponsDatal MAXORD];
}ASWInfo;

/***##t*##*t*tt#t####t**tt*#/

typedef struct {

OrdName Name[MAXORDI.
int Range[MAXORD]:
} WeaponRangelnfo;

114

/**#*********t**********#*t***tt**/

enum BGEventType {
BGCourseSpeed.
ASWLevel,
AAWLevel,
SetStation,
ShipCourseSpeed,
Unrep,
Consol,
FuelTransfer,
OrdTransfer,
RaidEvent,
StrikeEvent,
ASWProsecute,
ResumeBGCourseSpeed,
Other

N

typedef enum BGEventType BGEventType;

/*******#***********************************#*******************************/

enum PredictType |
Orphan,
Child,
Parent,
Interval

b
typedef enum PredictType PredictType;

/******#***#**l

typedef struct {
float F76PercentCap[3],
F44PercentCap(3];
}PercentCaplnfo;

[k otk ok ko ok o kR KRk kokoR kR Ko R kR ook R KK

typedef struct {
PercentCaplnfo Ships[MAXBGSHIPS];

}BGResultinfo;
/******t*#**********t*********#*************#*******#*****#t**##************/
struct BGHeader{

struct BGHeader *Prev,

*Next;

BGEventType EType:

int Index;

int DTG;

char Date[DTGLENGTH];

char Title[MAXLENGTH];

float Course;

float Speed;

)
typedef struct BGHeader BGHEADER:

118

/*************************#*****#************t*****************************t/

struct BGEvent {

struct BGEvent *Prev,
*Next;
int DTG,
Index,
Created,
Predictlnterval;
BGEventType EType;
PredictType PType;
CalcType CType;
ThreatType TType;
Unrepinfo Unrep;
Directonlnfo Direction;
Strikelnfo Strike;
RaidInfo Raid;
ASWInfo ASW;

b
typedef struct BGEvent BGEVENT;

/***i*********t**/

struct RelationType {
struct RelationType *Prev,
*Next;
int Created;
BGFEVENT *Childl,
*Child2,
*Child3,
*Child4,
*Childs;
}:

typedef struct RelationType RELATION;

JRERRO Rk ROk R R Rk sk ok R AR Rk kR R K

116

/***********#************t*****#*************t*******t*************

*Author Bemadette C. Brooks

*Office . Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-2180

*Project

*Advisor Dr. C. Thomas Wu

* Computer Science Department

* Naval Postgraduate School

* Monterey, CA 93943

* Phone: (408) 656-3391

*Filename : BGEventsLib.c

*Date : 27 Feb 93

*Content : Bodies of user-defined functions to represent battle
* groups and ships. C manifests contained in BGEventsLib.h
*Note : “global.h” TAE-generated file includes bg.h

e 2 2 e e e g e s s ok sk ke 3 e ol b e sl o e e e el e e s e s ke 3k 2k kol e ok ol a3 ke e sl s o ok s s i ol sl ok o sl ol s ol ol ok ool o o o ok o
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*TAE system include files*/
#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “parblk.inc”
#include *“terminc.inc”
#include “global.h”

fidefine YES I
#define NO 0

/**************#**

* This function saves the battle group events list given an index to the

* appropriate battle group in the array and a pointer to the head of the

* battle group event list. It returns the pointer to the head of the

* list.

e e 3 2 3 3k e e b 2 e e 3 e o e ok o o e e s s 3k e she e e st ke sk o e ke ok ok e ok ok ol 3k ok ok 3 sk o 3k 3k af e e ok ok ok

*/

BGEVENT™* SaveBGEvents(BGlIndex, BGEventList)
int BGlIndex;
‘BGEVENT"’ BGEventList;

char FileName[100];
char Suffix MAXNAME]:
FILE* DataFile;

BGEVENT* Current; /*pointer used to traverse the doubly-linked list*/

/*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[0], filename is /h/bglcss/scripts/data/Events0.dat*/

strecpy(FileName, EVENTSDATA);
strepy(Suffix, IntToString(BGlIndex));
strcat(Suffix, “.dat™);
strcat(FileName, Suffix);

117

DataFile = fopen (FileName, “w”);

Current = BGEventList;
[*assign the head pointer to Current to save the original position of the
head pointer*/

while (Current != NULL}Y

fprintf(DataFile, “%d\n”, Current->DTG);

fprintf(DataFile, “%d\n", Current->Created);

fprintf(DataFile, “%d\n”, Current->EType);

fprintf(DataFile, “%d\n”, Current->CType);

fprintf(DataFile, “%d\n", Current->TType);

if (Current->EType == BGCourseSpeed){

fprintf(DataFile, “%If\n”, Current->Direction.Course);
fprintf(DataFile, “%I1f\n", Current->Direction.Speed);

}

if (Current->EType = Unrep){
fprintf(DataFile,” %d\n", Current->Unrep.DelShip);
fprintf(DataFile,”%d\n", Current->Unrep.RecShipl);
fprintf(DataFile,”%d\n”, Current->Unrep.RecShip2);
fprintf(DataFile,”%d\n”, Current->Unrep.Tactic);
fprintf(DataFile,”%If\n”, Current->Unrep.Latitude);
fprintf(DataFile,” %lf\n”, Current->Unrep.Longitude);
fprintf(DataFile,” %d\n", Current->Direction.Shiplnvolved);
fprintf(DataFile,”%1f\n” Current->Direction.Course);
fprintf(DataFile,” %1f\n” Current->Direction.Speed);

)

Current = Current->Next;

}

fclose(DataFile);

return(BGEventList);
)

/***************************#*******************************

* This function reads the battle group event list data from the appropri-

* ate ASCII text file given the index to the battle group array. It

* returns a pointer to the head of the batue group event list.

e sk 2 2 e e ke e e 23 2 ke 2 e e 3 e e 2ge 3¢k e e 3 3 e ke 5k e e 3k 3 3 2k 3 ek i 3 e ok e e ok a3k ok ok ak sk ok 3 sk ok ok ek

*/

BGEVENT* GetBGEvents(BGIndex)
it BGIndex;
{

char FileName[100];
char Suffix MAXNAME];
FILE* DataFile;

BGEVENT* Current;
BGEVENT* Head = NULL,;
BGEVENT* Temp;

[*allocate memory for the Head event struct*/
Head = (BGEVENT™*) malloc(sizeof (struct BGEvent));

/*make sure these data are correctly initialized*/
Head->Next = NULL;

Head->Prev = NULL:

Head->DTG = 0;

/*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[0], filename is /h/bglcss/scripts/data/Events0.dat*/

118

strcpy(FileName, EVENTSDATAY;
strecpy(Suffix, IntToString(BGIndex));
strcat(Suffix, “.dat™);
strcat(FileName, Suffix);

if ((DataFile = fopen (FileName, “r”)) != NULL){

/*get the Head data first*/

fscanf(DataFile, “%d\n”, &Head->DTG);

fscanf(DataFile., “%d\n”, &Head->Created);

fscanf(DataFile, “%d\wn”, &Head->EType);

fscanf(DataFile, “%d\n”, &Head->CType):

fscanf(DataFile, “%d\n”, &Head->TType);

if ((feof(DataFile))(

if (Head->EType == BGCourseSpeed){

fscanf(DataFile, “%If\n”, & Head->Direction.Course);
fscanf(DataFile, “%If\n", & Head->Direction.Speed);

}

if (Head->EType == Unrep){
fscanf(DataFile,”%d\Wn"”, & Head->Unrep.DelShip);
fscanf(DataFile,"%d\n”, & Head->Unrep.RecShip1);
fscanf(DataFile,”%d\n", &Head->Unrep.RecShip2);
fscanf(DataFile,”%d\W”, & Head->Unrep. Tactic);
fscanf(DataFile,”%!f\n",&Head->Unrep.Latitude);
fscanf(DataFile,”%If\n",&Head->Unrep.Longitude);
fscanf(DataFile,”%d\n" & Head->Direction.ShipInvolved);
fscanf(DataFile,”%1f\n",&Head->Direction.Course);
fscanf(DataFile,”%1f\n",&Head->Direction.Speed);

[*other event cases to be implemented*/

}

f*assign Head to Curmrent to save original Head pointer position*/
Current = Head;

while (!feof(DataFile)){

/*make a new event node for each new data read*/
Temp = (BGEVENT*) malloc(sizeof (struct BGEvent)).
Temp->Next = NULL;

[*attach new node to Current*/
Temp->Prev = Current;
Current->Next = Temp;

/*move to the new node*/
Current = Current->Next;

fscanf(DataFile, “%d\n", &Current->DTG);

fscanf(DataFile, “%d\n", &Current->Created);

fscanf(DataFile, “%d\n”, &Current->EType);

fscanf(DataFile, “%dwn”, &Current->CType);

fscanf(DataFile, “%d\n”", &Current->TType);

if (feof(DataFile)){

if (Current->EType = BGCourseSpeed){

fscanf(DataFile,” %If\n" .& Current->Direction.Course);
fscanf(DataFile,”%!f\n" . & Current->Direction.Speed);

}
if (Current->EType == Unrep){

fscanf(DataFile,”%d\n", & Current->Unrep.DelShip):
fscanf(DataFile."%d\n", & Curremt->Unrep.RecShip1).

119

fscanf(DataFile,”%dWw", & Current->Unrep.RecShip2);
fscanf(DataFile,”%d\n", & Current->Unrep.Tactic);
fscanf(DataFile,”%!f\n", &Current->Unrep.Latitude):
fscanf(DataFile,”%!f\n”, &Current->Unrep.Longitude);
fscanf(DataFile,”%d\n",
&Current->Direction.ShipInvolved);
fscanf(DataFile,” %f\n" & Current->Direction.Course); .
fscanf(DataFile,”%1f\n" & Current->Direction.Speed);

/*other event cases to be implemented*/

}
}
fclose(DataFile);

}
\ retumn(Head);

/***

* Given a pointer to the newly raade event node and values passed from
* the Unrep panel, return a completed unrep event node to be added to
* the event list. After calling this function, it is necessary to make

* the following calls to these functions (yet to be implemented):

* GetRelations,

* MakeRelation,

* InsertRelation,

* UnrepCalculations,

* MakeChild,

* InsertBGEvent,

* SaveRelations,

* SaveBGEvents.

e 3 s s e 3 i e 3 s ok ok ofe o sk ok o e s e e b o s o o e o 3k sk e 3 s o ke ol o o ae e sl 3 e e e e e e ok ok ok ok ok ok ok ok

*/

BGEVENT* MakeUnrep(BGEvent, Delivery, Rec1, Rec2, Tactic, Lat, Long)
BGEVENT* BGEvent;

int Delivery, Recl, Rec2, Tactic;
({iouble Lat, Long;
if (BGEvent->EType = S){
BGEvent->Unrep.DelShip = Delivery;
BGEvent->Unrep.RecShipl = Recl;
BGEvent->Unrep.RecShip2 = Rec2;
BGEvent->Unrep.Tactic = Tactic;
BGEvent->Unrep.Latitude = Lat;
BGEvent->Unrep.Longitude =Long;
} else {

’

}
return(BGEvent);

/****************************#**#******#*************#*****

* This function creates the header to be displayed in the event list

* panel to the user. Given the event parameters, return a header node.
st 3¢ ¢ 2k o e e 3 3 2 afe e 2 3 3k e o s o e s e ok e 3k o 3 o ek 3k ok e e sk sfe e ok o0 e 300 e e s o e e e e e e e s ke e e e

*/
BGHEADER* MakeBGHeader(EventType, EventTime, EventCourse, EventSpeed)

/*Function is incomplete. It is designed to handie past of the battle course and
speed change event. Need to add remaining parameters to make function
generic to all events.*/

BGEventType EventType;
char EventTime[DTGLENGTH];
float EventCourse;
float EventSpeed;
{
BGHEADER*BGHeader;

BGHeader = (BGHEADER¥*) malloc(sizeof (struct BGHeader));
BGHeader->Prev = NULL;
BGHeader->Next = NULL;

if (EventType = BGCourseSpeed){
strcpy(BGHeader->Date, EventTime),
strcpy(BGHeader->Title, “BG course t0”);

BGHeader->Course = EventCourse;
BGHeader->Speed = EventSpeed;
BGHeader->EType = EventType;

/*other events to be implemented*/

return(BGHeader),
}

3k 3 2k e 3 3k 2 ok e a5 s 2k 3 3¢ s 3K o 3 s s 2 3 o 36 20 3k e 3¢ 3 3 e ke e e e 3 e e 2 3 ok e e ke o e e 3 o ke ke e e e ke ok ok ok ok ok
* Given the appropriate index to the battle group array, this function

* gets the battle group header information from the appropriate ASCII

* text file and returns a pointer to the head of the battle group header

* |list. Similar in algorithm to GetBGEvents.

ke ok s 20 a8 2 o 3¢ o 2 3 e o 2 3 3 e 3 aje 2 e 2 2 e A e ok e e 3 e 2 2k e s 28 ok e o8 2 ke e o e e e o ok e ke e e e e ke s sk ke akok
*/

BGHEADER* GetBGHeaders(BGIndex)

{

int BGIndex;
int i=0;
FILE* DataFile;
char Suffix MAXNAME];
char FileName[100];

BGHEADER* Current;
BGHEADER* Head=NULL;
BGHEADER* Temp;

Head = (BGHEADER*) malloc(sizeof (struct BGHeader));
Head->Next = NULL;

Head->Prev =NULL;

Head->DTG =0;

121

/*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[0]. filename is /h/bgicss/scripts/data/Events0.dat*/

strcpy(FileName, HEADERSDATA),
strepy(Suffix, IntToString(BGIndex));
strcat(Suffix, “.dat™);
strcat(FileName, Suffix);

if (DataFile = fopen (FileName, “r”)) != NULL){

Head->Index = 1i;

fscanf(DataFile, “%dwn”, &Head->EType);

fscanf(DataFile, “%d\n”, &Head->DTG);

fscanf(DataFile, “%s\n”, Head->Date);

fscanf(DataFile, “%s\n”, Head->Title);

if (Head->EType == BGCourseSpeed){
fscanf(DataFile,”1f\n”, & Head->Course);
fscanf(DataFile,”lf\n”, & Head->Speed);

}

[*other events to be implemented*/
Current = Head;

while ((feof(DataFile)){
Temp = (BGHEADER*) malloc(sizeof (struct BGHeader));

Temp->Next =NULL
Temp->Prev = Current;
Current->Next = Temp;

Current = Current->Next;

fscanf(DataFile, “%d\n”, &Head->EType);
fscanf(DataFile, “%d\wn”, &Current->DTG);
fscanf(DataFile, “%s\n”, Current->Date);
fscanf(DataFile, *%s\n”, Current->Title);
if (Current->EType == BGCourseSpeed){
fscanf(DataFile,”If\n”, & Current->Course);
fscanf(DataFile,”1f\n”, & Current->Speed);
/*other events to be implemented™/
)
fclose(DataFile);

return{Head);

122

/********#**************#******************************#******

* This function inserts the newly created BGHeader into the Header list

* given a pointer to the head of the header list and a pointer to the

* newly created BGHeader. It returns a pointer to the head of the header

* list.

3k e k¢ a3 2 3¢ 3 3 28 2 2 a3 o 3k 38 3 2k e 26 3k b afe o 3 a8 2 e 2k 3 3 e 3 3 2 ok 3 ok e e 23 e e e e el e 3k 3 e ek ok ok e ke ok ok

*/

BGHEADER* InsetBGHeader(Head, BGHeader)
BGHEADER* Head;

BGHEADER* BGHeader,

{
int SpotFound;
BGHEADER* Cuarrent;
SpotFound =NO;
Current = Head;

if (Head->DTG == 0) {
Head = BGHeader;

} else if (BGHeader->DTG > Current->DTG)
&& (Current->Next == NULL)){

Current->Next = BGHeader;
BGHeader->Prev = Current;

} else if (BGHeader->DTG > Current->DTG) && (Current->Next != NULL)){
while ((Current->Next != NULL) && (SpotFound == NO)) {
if (BGHeader->DTG <= Current->DTG) {
SpotFound = YES;

} else {
Current = Current->Next;
}

}
if (Current->Next = NULL && BGHeader->DTG >= Current->DTG){

Current->Next = BGHeader;
BGHeader->Prev = Current;
} else {
BGHeader->Next = Current;
BGHeader->Prev = Current->Preyv;
Current->Prev = BGHeader;
BGHeader->Prev->Next = BGHeader;

}

} else if (BGHeader->DTG <= Current->DTG) {
Current->Prev = BGHeader;
BGHeader->Next = Current;

\ Head = BGHeader;

return (Head);

123

/*******#*#*****i****i**************************&#*****************

* Given an index to the battle group array and a pointer to head of
* the battle group header list, this function saves the header list data
* to the appropriate ASCII text file. Retumns a pointer to the head of

* the header list.
3¢ b jc 3 e e ok 3k ke e 3 e 3 25 o8 3¢ 2 3¢ e 2 sk 3 o 3¢ e 2 3k 3 s 3 2 3 3 3k i 2 ok e sk e e 3 2 2k 3 e Yo ok 3k 3 ok ok kK e ok 3k i ok K ok ok ok ok

*/ R
BGHEADER* SaveBGHeaders(BGIndex, BGHeaderList)
int BGIndex;
RGHEADER* BGHeaderList;
{
char FileName{100]; b
char Suffix MAXNAME];
FILE* DataFile;
BGHEADER* Current;

[*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[0], filename is /h/bglcss/scripts/data/Events0.dat*/

strecpy(FileName, HEADERSDATA);

strepy(Suffix,IntToString(BGIndex));
strcat(Suffix, “.dat”™);
strcat(FileName, Suffix);
DataFile = fopen (FileName, “w”);
Current = BGHeaderList;
while (Current i= NULL){
fprintf(DataFile, “%d\n", Current->EType);
fprintf(DataFile, “%c\n”, Current->DTG);
fprintf(DataFile, “%s\n”, Current->Date);
fprintf(DataFile, “%s\n”, Current->Title);
if (Current->EType = BGCourseSpeed){
fprintf(DataFile,”%If\n", Current->Course);
fprintf(DataFile,” %1f\n", Current->Speed);
[*other events to be implemented*/

Current = Current->Next;

}

fclose(DataFile);
return(BGHeaderList);

/*******#*********#*t*#******************************#**##**

* Given the information from an event panel, this function makesa battle
* event node and returns a pointer to it. This function is currently

* designed to handle only a battle group course and speed change cvent.
* It needs to be extended to handle the remaining events.

2l e e 2 e 3 3 ok e e ok 3k e 3 3¢ 3¢ e 2k ok e e 2k e 3 e ke 30 3k 3 3 e s e e e e ok e e e 3k ol e A e e e ke gk ok skl ok ok

*/

BGEVENT* MakeBGEvent(EventCreated. EventDTG, EventType. EventPredictType,
EventCalc, EventThreat, EventShip,
EventCourse, EventSpeed)

int EventCreated,
EventDTG,
EventShip;
BGEventType EventType;
PredictType EventPredictType;
CalcType EventCalc;
ThreatType EventThreat;
float EventCourse;
float EventSpeed;

{
BGEVENT* BGEvent;

BGEvent = (BGEVENT*) malloc(sizeof (saruct BGEvent));

BGEvent->Created = EventCreated;
BGEvent->Prev =NULL,;
BGEvent->Next =NULL,;
BGEvent->DTG = EventDTG:
BGEvent->EType = EventType;
BGEvent->PType = EventPredictType;
BGEvent->CType = EventCaic;
BGEvent->TType = EventThreat;
if (BGEvent->EType == BGCourseSpeed){
BGEvent->Direction.Course = EventCourse;
BGEvent->Direction.Speed = EventSpeed;

}
[*other events to be implmented*/

return (BGEvcnt);

125

/i**#*****‘*****t****#**t**##*#***t************#*a o ek oge ok ok ok

* This functions makes a related-event node used to connect related

* events together such as as unrep with its associated stationing events.
* The parameter passed is the integer value of the creation time for the
* parent event (such as the unrep event). No more than 5 associated

* events are allowed by this function. Returns a pointer to the newly

* created relation node.

e 3 a2 ke o e s ok o e 6 e 3 2 e e 3 o e o o sk ook o sk skl ok e o ok sk ok ke ak ok ke ok ek ok e ok ook ok ok ok ke

*/

RELATION* MakeRe!lation(RelationCreated)
int RelationCreated;

{
RELATION* Relation;
Relation = (RELATION*) malloc(sizeof (struct RelationType)):

Relation->Created = RelationCreated:
Relation->Prev =NJLL;
Relation->Next = NULL,;
Relation->Child1 =NIULL;
Relation->Child2 =NULL;
Relation->Child3 =NULL;
Relation->Child4 = NULL;
Relation->Child5 =NULL;

return (Relation);

}

/**t***t**

* This function makes a child event by first calling MakeBGEvent and

* attaching the child to the appropriate relation node. After a call

* to this function is made, reed to call, for instance, UnrepCalculations

* and make the appropriate assignments to the event node. Function

* retums a pointer to the newly made child.

ok 3 s 3 e 2 s ke 3 >k 20 3 ke ofe s o s 2 S 3k A 3k e e s e ok 3k ok ok ok sk 3kl ok e 2 3K 2 sk 2k ok s e e e e ke e ok 3 ok e e ok ok K

*/

BGEVENT* MakeChild(Relation, ParentCreationTime)
RELATION* Relation;

int ParentCreationTime,

{
BGEVENT* Child;
int Now;

/*now should be assigned the int.ger value of current system time*/

Child = MakeBGEvent
(Now ParentCreationTime.Other,Child NoThreat,100,0.0.0.0);

if (Relation->Child1 == NULL) {
Relation->Child1 = Child;

} else if (Relation->Child2 == NULL) {
Relation->Child2 = Chiid;

} else if (Relation->Child3 == NULL) {
Relation->Child3 = Child;

} else if (Relation->Child4 == NULL) {
Relation->Child4 = Child;

126

} else if (Relation->Child5 == NULL) {
Relation->Child5 = Child;
}

return (Child);
}

[k KRR R R R R R KKK ok

* This function takes a pointer to the head of the battle group event

* list and a pointer to the newly created battle group event and inserts

* the new event into the list based on chronological dat time group of

* the events, Returns a pointer to the head of the batlie group event

* list.

k35 26 3¢ 3 2ok 2 o 3 3k 3 ok 3 2 3 e 2k e e sk 3¢ 3 e 3 2 2 3 2k o 3 3k ek ok e 3 e 3k ke 3 3 ok 2k e e e ke ok o e ofe ok e ke ok

*/

BGEVENT™* InsertBGEvent(Head, BGEvent)
BGEVENT* Head;
BGEVENT* BGEvent;

{

int SpotFound;
BGEVENT* Current;
SpotFound = NO:
Current = Head:

if (Head->DTG == 0) {
Head = BGEvent;

} else if ((BGEvent->DTG > Current->DTG)

& & (Current->Next == NULL)) {
Current->Next = BGEvent;
BGEvent->Prev = Current;

} else if ((BGEvent->DTG > Current->DTG)
&& (Current->Naxt != NULL)) {

while ((Current->Next != NULL) && (SpotFound == NO)) {
if (BGEvent->DTG <= Current->DTG) {
SpotFound = YES;

} else {
Current = Current->Next;
}

}

if (Current->Next == NULL
& & BGEvent->DTG >= Current->DTG) {

Current->Next = BGEvent;
BGEvent->Prev = Current;

} else {
BGEvent->Next = Current;
BGEvent->Prev = Cumrent->Prev;
Current->Prev = BGEvemt;

BGEvent->Prev->Next = BGEvent;
}

} else if (BGEvent->DTG <= Current->DTG) {

Current->Prev = BGEvent;
BGEvent->Next = Current;

127

Head = BGEvent;
}

/* if BGEvent is actually an interval node, copy course and speed
* from Prev */
if (BGEvent->EType == Other) && (BGEvent->Prev != NULL)) {
BGEvent->Direction.Course = BGEvent->Prev->Direction.Course;
BGEvent->Direction.Speed = BGEvent->Prev->Direction.Speed;
}

return (Head),

}

/********#*****************#**********************************

* This function’s basic algorithm is virutally the same to InsetBGEvent

* except for the final if-statement assignments and the data type

* involved.

afc 20 3 2 2k e 2 2 e 2 e e e e e e e e 3 e 3 e 3k e 3 e ok e 3 e e e e e Ak e e 3k e sk o e s e 3 e e e el e sk Ak e ok 3k ek

*/

RELATION* InsertRelation(Head, Relation)
RELATION* Head;

REL ATION* Relation;

{

int SpotFound;
RELATION* Current;
SpotFound = NO;
Current = Head:

if (Head == NULL) {
Head = Relation;

}else if((Relation->Created > Current->Created)
&& (Current->Next == NULL)) {

Current->Next = Relation;
Relation->Prev = Current;

} else if ((Relation->Created > Current->Created)
& & (Current->Next != NULL)) {

while ((Current->Next !'= NULL) && (SpotFound == NO)) {
if (Relation->Created <= Current->Created) {
SpotFound = YES;
} else {

}

]
if (Current->Next == NULL & & Relation->Created >=
Current->Created) {
Current->Next = Relation;
Relation->Prev = Current;

Current = Current->Next;

} else {
Relation->Next = Current;
Relation->Prev = Current->Prev;
Current->Prev = Relation;
Relation->Prev->Next = Relation;

)
} else if (Relation->Created <= Current->Created) |
Current->Prev = Relation;

128

Relation->Next = Current;
Head = Relation:

return (Head);

}

/**#***********

* This functions finds the Parent event with its unique time stamp. If
* If the parent doesn’t exist, then it finds the orphan event and returns

* a pointer to the event found.
e e 3 s e 2 e o afe 38 ok e 2 2k 25 26 ok 3 3k 2 e e 3 24 e 2k 3k 3 s 2k e e e 2k 2 3k e ke 3k s ke sfe ok o 3 S e ko o ok 3 3k Rk 3 ok ok ok 3k

*/

BGEVENT* GetParent(Head, Creation)
BGEVENT* Head;
int Creation;
{
BGEVENT* Current;
BGEVENT* OrphanEvent;

int SpotFound;
SpotFound = NO;
OrphanEvent =NULL;
Current = Head;

/* if Head of list is orphan and there are events to scan */
if (Current->Next != NULL) {

while ((Current->Next != NULL) && (SpotFound ==
NO)) {

if (Current->Created != Creation) {
Current = Current->Next;
} else if ((Current->Created == Creation) & &
(Current->EType == 2)) {
Current = Current->Next;
} else {
SpotFound = YES;

}
return (Current);

} else if (Current->Next == NULL) {
return (Current);

} else if (Current == NULL) {
return (OrphanEvent):

}

/*****#*#**************t***#*************#******#**********

* This functions finds the Parent event with its unique time stamp. If
* If the parent doesn’t exist, then it finds the orphan event and returns

* a pointer to the event found.
e 2 2 s e e b ak sk e e e o 20 o0 e ol o e e s e e sl sk s e e e sk 3k e 3 2k 3 ok oK e ke ke e sl s sk ok e o e ok ok o sk e ok ok ok

*/
RELATION* GetRelation(Head, Creation)

RELATION* Head,
int Creation;

129

RELATION* Current;
RELATION* OrphanEvent;

int SpotFound;
OrphanEvent =NULL;
Current = Head;
SpotFound =NO;

/* if Head of list is orphan and there are events to scan */
if (Current->Next != NULL) {

while ((Current->Next != NULL) && (SpotFound == NO)) {
if (Current->Created != Creation) {

Current = Current->Next;
} else {
SpotFound = YES;

}

retumn (Current);

} else if (Current->Next == NULL) {
return (Current);

} else if (Current == NULL) {
return (OrphanEvent);
}

}

/**************************** A o 3 e 2 2 e 3¢ e e e e e e e e de

* Given a pointer to the head of the battle group event list and the

* event to be deleted, this function deletes the event. Before calling

* this function with the Parent Event node pointer, need to call

* the DeleteChildren function to delete the associated children.

ke 3¢ ofe 3k 2 3k 3 2 3e o e 3 3 3 2 3k fe 2 e e s e e e e e e 2 2 2k e 3 3 3k e e ke e e e 3k 3 2k 3k e 3 A e e ok e o e ol e 3k ke

*/

BGEVENT *DeleteBGEvent(Head, BGEvent)
BGEVENT *Head;

BGEVENT *BGEvent;

{

J* delete tail */

if (BGEvent->Next == NULL) && (BGEvent->Prev != NULL)) {
BGEvent->Prev->Next = NULL:
BGEvent->Prev = NULL;
BGEvent->Next=NULL;

/* delete Head */

) else if (BGEvent->Prev == NULL) && (BGEvent->Next != NULL)) {
Head = BGEvent->Next;
Head->Prev = NULL;

/* delete middle */

} else if (BGEvent->Next != NULL) && (BGEvent->Prev '= NULL)) |
BGEvent->Prev->Next = BGEvent->Next;
BGEvent->Next->Prev = BGEvent->Prev:;

/* delete one-node list */

130

} else {
Head = NULL;
BGEvent = NULL;

free(Head);
]

free(BGEvent);

return (Head);

}

/***&***********

* This function makes repeated calls to DeleteBGEvent in order to delete
* all of the children of the Parent event. Returns the head of the

* battle group event list.
s e e e s e 3¢ ake e 2 35 24 e e 2k 35 2k e e 3k e 3¢ 3¢ 8¢ 2 K s e e 2k e s 2 2 e o e e 2 e e 2 e 3 sk 2 e ok 3k ke ok 3 3k ofe ok 3k ok ok 3k

*f

BGEVENT* DeleteChildren(Head, Parent)
BGEVENT* Head;

RELATION*Parent;

if (Parent->Child1 != NULL) {
Head = DeleteBGEvent(Head, Parent->Child1);

}
if (Parent->Child2 != NULL) {
Head = DeleteBGEvent(Head, Parent->Child2);

}
if (Parent->Child3 != NULL) {
Head = DeleteBGEvent(Head. Parent->Child3);

}
if (Parent->Child4 != NULL) {
Head = DeleteBGEvent(Head, Parent->Child4);

}
if (Parent->Child5 '= NULL) {
Head = DeleteBGEvent(Head, Parent->Child5);

return (Head);

}

/***#*************/

131

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: global.h *** */

f* *** Generated: Dec 2 16:01:50 1992 *** */

/* b 2k ke 2 e 3k e 3 2 e e e k 3 o e e e 35 2 2 3k 2 3 3 3 ok 2k 2 3 3 3 e 3k e e 3 e e e ke ok e 3 3 2k e 3k ok e e sk 2 ok e ek 2 ok e e ek ke ok ok ke ak ok ok
* PURPOSE:

* This global header file is automatically “#included in each panel

* file. You can insert references to global variables here.

25 abe ok ol sk 2k 2 2ok 3k e 3 e e e 3 2k e 20k e e s sk ok e 2 e e e 2 3 20 e o 3 2 e 2 g age o e e e 3l e 3 e e 2 ke s ak ok e ke i 0 aje e ofe e i ke ook ok ok

*/

#ifndef I_GLOBAL /* prevent double include */
#define I_GLOBAL 0

/* macros for access to parameter values
%*
* These macros obtain parameter values given the name of
* a Vm object and the name string of the parameter.
* The Vm objects are created by the Initialize_ All_Panels
* function for a resource file.
¥*

* Reference scalar parameters as follows:

*

* StringParm(myPanelTarget, “s”) -- string pointer
* IntParm(myPanelTarget, “i”) -- integer value
* RealParm(myPanelTarget, “r”) -- real value

*

* For vector parameters, do the following:

*

* TAEINT *ival;

* ival = &IntParm(myPanelTarget, “i”);

* printf (“%d %d %d”, ival[0]. ival[1], ival[2]);

*

*/

#include “bg.h”

#include “BGEventsLib.h”

struct VARIABLE *Vm_Find ();

#define StringParm(vmlid, name) (SVAL(*Vm_Find(vmld, name),0))
#define IntParm(vmId, name) (IVAL(*Vm_Find(vmId, name), 0))
#define RealParm(vmId, name) (RVAL(*Vm_Find(vmid, name), 0))
/* Dispatch Table typedef */

typedef VOID (*FUNCTION_PTR) ();
typedef struct DISPATCH

{

TEXT *parmName;

FUNCTION_PTR eventFunction;

b
#define EVENT_HANDLER static VOID /* a flag for documentation */
/* Display Id for use by direct Xlib calls: */
extern Display *Default_Display;

#define SET_APPLICATION_DONE\
(\

132

extern BOOL Application_Done; \
Application_Done = TRUE; \
}

#endif

133

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** ¥/
/* *** File: pan_WptHelp.c *** */
/* *** Generated: Jan 19 14:53:14 1993 *** */
ok e de o o 2 e ok ok ek ok e 3 e o e 2k 3k 3k 2t 2 2fe 3 3k e 3k e ok 3 e e Ak e 3k e 2 ek ak i sk e e o ok ok o ok Ak 3k ok ok
* PURPOSE:
* This file encapsulates the TAE Plus panel: WptHelp
* These routines enable panel initialization, creation, and destruction.
* Access to these routines from other files is enabled by inserting
* *#include “pan_WptHelp.h""’. For more advanced manipulation of the panel
: using the TAE routines, the panel’s Id, Target, and View are provided.

* For the panel items:
* (NO EVENT GENERATING ITEMS IN THIS PANEL)

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

3k e e 2 o3 2k 3¢ 2 2 e e sl s 3 2ol fe sl e sk ke 3 ok e e e ak o e 3 3 e ke ok e ok s 3 3 ok e e a ol e sk e 2 el ok 2k ok e ek o oo s e ke ke ok ke e kol ok kK

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_WptHelp.h"

/* One “include” for each connected panel */

1d WptHelpTarget, WptHelpView, WptHelpld:;
/* WptHelpDispatch is defined at the end of this file */

/***#******t***************t*t

* Initialize the view and target of this panel.
*

/
FUNCTION VOID WptHelp_Initialize_Panel (vinCollection)
Id vmCollection;

{
Id Co_Find ();

WptHelpView = Co_Find (vimCollection, “WptHelp_v™);
WptHelpTarget = Co_Find (vimCollection, “WptHelp_t");
}

/***&********************#****
* Create the panel object and display it on the screen.
*/

FUNCTION VOID WptHelp_Create_Panel (relativeWindow, flags)
Window relativeWindow:;
COUNT flags;

{
if (WptHelpld)
printf (“Panel (WptHelp) is already displayed.\n™);
else
WptHelpld = Wpt_NewPanel (Default_Display, WptHelpTarget, WptHelpView,
relativeWindow, WptHelpDispatch, flags);
}

/************************#**************************#*t#********#****#****

* Erases a panel from the screen and de-allocate the associated panel
* object.
L 3

/
FUNCTION VOID WptHelp_Destroy_Panel ()
{

134

Wpt_PanelErase(WptHelpld);
WptHelpld=0;
]

2 2 ek e e 3 3k 2 e 3 e 2k 2k o8 e 20 2 e e e 2k e e e e 2ok e e ek sk e e 2 3 ek e ok e e e e s 3 e ok ol o Sl e e 2k el ok ke 3 ok 3k e ok ok A ok ok K

* Connect to this panel. Create it or change it’s state.

*

FUNCTION VOID WptHelp_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (WptHelpld)
Wpt_SetPanelState (WptHelpld, flags);
else
WptHelp_Create_Panel (relativeWindow, flags);
}

struct DISPATCH WptHelpDispatch[) = {
{NULL, NULL} /* terminator entry */
|5

135

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: pan_WptHelp.h *** */
/* *** Generated: Jan 19 14:53:14 1993 *** */
/***#*#*********
* PURPOSE:

* Header file for panel: WptHelp

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* WptHelp

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

a2 ek ok 3 ke 3 e e ok s e 3k 3 2 3 2k 3 36 3k 3 e 3¢ e e ek e e ok o ke 3k e e ok s ek 3 e ok e e 2 o e 3K s ek sk e sl e ok e e o ol sk ek ok ok ok kool ok ok Kok

*/

#ifndef I_PAN_WptHelp /* prevent double include */
#define I_PAN_WptHelp 0

/* Vm objects and panel Id. */
extern Id WptHelpTarget, WptHelpView, WptHelpld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH WptHelpDispatch{];

/* Initialize WptHelpTarget and WptHelpView */
extern VOID WptHelp_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID WptHelp_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID WptHelp_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID WptHelp_Connect_Panel ();
#endif

136

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: wpthelp.c *** */

[* *** Generated: Jan 19 14:53:14 1993 *** */
/**#**#*t*****************
* PURPOSE:

* This the main program of an application generated by the TAE Plus Code

: Generator.

* REGENERATED:
* This file is generated only once.
*

* NOTES:
* To wurn this into a real application, do the following:
*

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string “pan_" with the

* panel name (followed by a “.c”). Each parameter that you have defined
* to be “‘event-generating”, has an event handler procedure in the

* appropriate panel file. Each handler has a name that is a

* concatentation of the parameter name and the string “_Event”. Add

* application-dependent logic to each event handler. (As generated by

* the WorkBench, each event handler simply logs the occurrence of the

* event.)

*

* 2. To build the program, type “make”. If the symbols TAEINC, ...,

* are not defined, the TAE shell (source) scripts STAE/bin/csh/taesetup
* will define them.

*

* ADDITIONAL NOTES:

* 1. Each event handler has two arguments: (a) the value vector

* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with

* count 1.

*

* Though it’s unlikely that you are interested in the value of a button

* event parameter, the values are always passed to the event handler for
* consistency.

*

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in

* Initialize_All_Panels. There are macros defined in global.h to assist

* in accessing values in Vm objects.

*

* To access panel Id, target, and view, of other panels, add an
* “#tinclude” statement for each appropriate panel header file.
*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

3k e o ok 3 ok 2 2 3 afe s e 2 3 3 e 2 ok s e 2 o 2 e s e e ol 3 i 3 e e 3 3 sfe sl e 3k o e S 3k s e a3k s e 3 e I 3 3k 3 e e 2k ok sk e e e ol e ok e e 3k e ke ke
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “symtab.inc”

#include “global.h™ /* Application globals */

Display *Default_Display;
BOOL Application_Done = FALSE;

main (argc, argv)

137

FUNINT argc;
TEXT *argv(];

{
WptEvent wptEvent; /* event data */
CODE eventType;

COUNT termLines, termCols;
CODE termType;

/* PROGRAMMER NOTE:

* add similar extern’s for each resource file in this application
*/

extern VOID wpthelp_Initialize_All_Panels ();

extern VOID wpthelp_Create_Initial_Panels ();

struct DISPATCH *dp: /* working dispatch pointer */
IMPORT struct VARIABLE *Vm_Find();
struct VARIABLE *parmv; /* pointer 1o event VARIABLE */

/* initialize terminal without clearing screen */
t_pinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */
f_force_lower (FALSE);

Default_Display = Wpt_Init (NULL);

/* initialize resource file */
/* PROGRAMMER NOTE:

* For each resource file in this application, calls to the appropriate

* Initialize_All_Panels and Create_Initial_Panels must be added.

*/

wpthelp_Initialize_ All_Panels (*/h/bglcss/scripts/gui/setup/wpthelp.res™);
wpthelp_Create_lInitial_Panels ();

/* main event loop */

/* PROGRAMMER NOTE:

* use SET_APPLICATION_DONE in “quit” event handler to exit loop.
: (SET_APPLICATION_DONE is defined in global.h)

while (! Application_Done)
eventType = Wpt_NextEvent (&wptEvent); /* get next WPT event */
switch (eventType)
{
case WPT_PARM_EVENT:
/* Event has occurred from a Panel Parm. Lookup the event
* in the dispatch table and call the associated event
* handler function.
*/
dp = (struct DISPATCH *) wptEvent.p_userContext;
for (; (*dp).parmName != NULL:; dp++)
if ({s_equal ((*dp).parmName, wptEvent.parmName))
parmv = Vm_Find (wptEvent.p_dataVm, wptEvent.parmName);

(*(*dp).eventFunction)
((*parmv).v_cvp, (*parmv).v_count);

138

break;

}
break:

case WPT_FILE_EVENT:

/* PROGRAMMER NOTE:

* Add code here to handle file events.

* Use Wpt_AddEvent and Wpt_RemoveEvent to register and reniove
:/evenl sources.

printf (“No EVENT_HANDLER for event from external source.\n™);
break;

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle window events.
* WPT_WINDOW_EVENT can be caused by windows which you directly
* create with X (not TAE panels), or by user acknowledgement
* of a Wpt_PanelMessage (therefore no default print statement
* is generated here).
*/

break;

case WPT_TIMEOUT_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle timeout events.
* Use Wpt_SetTimeOu! to register imeout events.
x

printf (“No EVENT_HANDLER for timeout event.\n");

break;
default:
printf(“Unknown WPT Event\n™);
break;
} } /* end main event loop */

Wpt_Finish():/* close down all display connections */

/* PROGRAMMER NOTE:
* Application has ended normally. Add application specific code to
: close down vour application

/

} /* end miain */

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

J* *** File: wpthelp_creat_init.c *** */

/* *** Generated: Jan 19 14:53:14 1993 *** */

/# e e e e 2 e e 2 e e e e 3¢ 3 e e 2 3 e 3 ek e o e i 3k o 3k ok sk ok ok ok e sl ake sk skl e ok k¢ 3 ak ok ke sl 3 e o 3 e ke ke e X e e e 3k e e ok e e ok ok
* PURPOSE:

* Displays all panels in the initial panel set of this resource file

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is added to the initial panel set

* A panel is deleted from the initial panel set

* For the set of initial panels:

* WptHelp

*

* CHANGE LOG:
* 19-Jan-93 Initially generated... TAE

s e a3k o o 3 3 2k 3 3 3 K 3k 2 i 3 3 ke s e ok 3 s sk 3ok 3 e 3 ke e 3 3 sk 3 38 3 3k e e ok ak K 3 ok 36 3 3 3ok 3 3 3k 3 e o ok ok 3k ke e ke e e e e ek e ek
*/
#include “taeconf.inp”
#include “wptinc.inp”
#include “global.h™ /* Application globals */
/* One include for each panel in initial panel set */
#include “pan_WptHelp.h”
FUNCTION VOID wpthelp_Create_Initial_Panels ()
{
/* Show panels */

WptHelp_Create_Panel (NULL, WPT_PREFERRED);
}

149

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: wpthelp_init_pan.c *** */

/* *** Generated: Jan 19 14:53:14 1993 *** */
/*******#*******************t******************************i**#***********
* PURPOSE:

* Initialize all panels in the resource file.

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is deleted

* A new panel is added

* A panel’s name is changed (not title)

* For the panels:

* WptHelp

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
sk 2 aje s 2 2 2 3 e 3 2 s 3k 3k 2 2 3k 5k 3l e s s e 3 e o 3 2 2k e o e 3 3 e 3k e 2k 3k e 2 3k s e e e 3 ak ook e e e e e o a3k ok 3k ok ok o 3 3k 3 ok e e e ke ok

*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “global.h” /* Application globals */

* One “include” for each panel in resource file */
#include “pan_WptHelp.h"

FUNCTION VOID wpthelp_Initialize_ All_Panels (resfileSpec)
TEXT *resfileSpec;
{
extern id Co_Find ():
extern Ild Co_New ();
1d vmCollection ;

/* read resource file */
vmCollection = Co_New (P_ABORT);,
Co_ReadFile (vmCollection, resfileSpec, P_ABORT);

/* initialize view and target Vm objects for each panel */

WptHelp_Inidalize_Panel (vimCollection);
}

141

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: BGSetup.c *** */

/* *** Generated: Dec 2 16:01:50 1992 *** */
/**************t****************#************************#**********#*****
* PURPOSE:

* This the main program of an application generated by the TAE Plus Code

: Generator.

* REGENERATED:
* This file is generated only once.
*

* NOTES:
* To turn this into a real application, do the following:
*

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string *“pan_" with the

* panel name (followed by a “.c™). Each parameter that you have defined
* to be “‘event-generating”, has an event handler procedure in the

* appropriate panel file. Each handler has a name that is a

* concatentation of the parameter name and the string *_Event”. Add

* application-dependent logic to each event handler. (As generated by
* the WorkBench, each event handler simply logs the occurrence of the
* event.)

E 3

* 2. To build the program, type “make”. If the symbols TAEINC, ...,

* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

E 3

* ADDITIONAL NOTES:

* 1. Each event handler has two arguments: (a) the value vector

* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with

* count 1.

*

* Though it’s unlikely that you are interested in the value of a button

* event parameter, the values are always passed to the event handler for
* consistency.

*

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in

* Initialize_All_Panels. There are macros defined in global.h to assist

: in accessing values in Vm objects.

* To access panel Id, target, and view, of other panels, add an

* “#include” statement for each appropriate panel header file.
e e ek e e e 2 e 2 e e 2l o 3¢ e sk 2fe 29 2 e sk 2 2 2 e 3k 2 2 2 e e e e e e ok e alk ok 6 ok ke e 3 2 3 3k o 3 2 o e 3 e s sk e ok ok ok ok ok ok 3 ook

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “symtab.inc”

#include “global.h” /* Application globals */

Display *Default_Display;
BOOL Application_Done = FALSE;

main (argc, argv)

FUNINT argc:
TEXT *argv(];

142

{
WptEvent wptEvent; /* event data */
CODE eventType;

COUNT termLines, termCols;
CODE termType /*BERN*/ret;

/*BERN*/

/* PROGRAMMER NOTE:
* add similar extern’s for each resource file in this application
*

extern VOID BGSetup_Initialize_All_Panels ():
extern VOID BGSetup_Create _Initial_Panels ();

struct DISPATCH *dp; /* working dispatch pointer */
IMPORT struct VARIABLE *Vm_Find();
struct VARIABLE *parmv; /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
t_pinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */
f_force_lower (FALSE);

Default_Display = Wpt_Init (NULL);

/* initialize resource file */

/* PROGRAMMER NOTE:

* For each resource file in this application, calls to the appropriate
*/Initialize_All__Panels and Create_Initial_Panels must be added.
E

BGSetup_Initialize_All_Panels (“/h/bgicss/scripts/gui/setup/BGSetup.res™);
BGSetup_Create_Initial_Panels ();

/* main event loop */
/* PROGRAMMER NOTE:
* use SET_APPLICATION_DONE in “quit” event handler to exit loop.
* (SET_APPLICATION_DONE is defined in global.h)
*/
/*BERN*/
ret = Wpt_SetHelpStyle (“wpthelp.res™);
if (ret 1= SUCCESS)
printf(“Couldn’t set help style\n™);
while (! Application_Done)
eventType = Wpt_NextEvent (&wptEvent); /* get next WPT event */
switch (eventType)
{
case WPT_PARM_EVENT:
/* Event has occurred from a Panel Parm. Lookup the event
* in the dispatch table and call the associated event
* handler function.
*/
dp = (struct DISPATCH *) wptEvent.p_userContext;

143

for (; (*dp).parmName != NULL; dp++)
if (s_equal ((*dp).parmName, wptEvent.parmName))
{

parmv = Vm_Find (wptEvent.p_dataVm, wptEvent.parmName);
(*(*dp).eventFunction)
((*parmv).v_cvp, (*parmv).v_count);
break;
}
break;

case WPT_FILE_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle file events.
* Use Wpt_AddEvent and Wpt_RemoveEvent to register and remove
* event sources.
*

/
printf (“No EVENT_HANDLER for event from external source.\n”);
break;

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle window events.
* WPT_WINDOW_EVENT can be caused by windows which you directly
* create with X (not TAE panels), or by user acknowledgement
* of a Wpt_PanelMessage (therefore no default print statement
* is generated here).
*/

break;

case WPT_TIMEOUT_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle timeout events.

* Use Wpt_SetTimeQut to register timeout events.

*

printf (“No EVENT_HANDLER for timeout event.\n™);

break;
default:
printf(“Unknown WPT Event\n”);
break;
} l /* end main event loop */

Wpt_Finish();/* close down all display connections */

/* PROGRAMMER NOTE:

* Application has ended normally. Add application specific code to
* close down your application

*/

}

/* end main */

144

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: BGSetup_creat_init.c *** */

/¥ *** Generated: Jan 19 11:14:17 1993 *** */
/*******J**************t***#******************************t***************
* PURPOSE:

* Displays all panels in the initial panel set of this resource file

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is added to the initial panel set

* A panel is deleted from the initial panel set

* For the set of initial panels:

* SetUpBGs

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

e 20 e 2k e o ok e 3k e e e ok e e ke e 3 e ke ke e e e 3k e e e e s e e 2k 3k e i b ok 3 e e e e 3k e e 3k e sk e Ak e e Ak ek e ok ke ek e e 2k okok 3 ok ok
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */

/* One include for each panel in initial panel set */
#include “pan_SetUpBGs.h”

FUNCTION VOID BGSetup_Create_Initial_Panels ()
/™ Show panels */

SetUpBGs_Create_Panel (NULL, WPT_PREFERRED);
}

145

/* *** TAE Plus Code Generator version Tue May 26 14:13:2/ EDT 1992 *** */

/* *** File: BGSetup_init_pan.c *** */

/* *** Generated: Jan 19 11:14:17 1993 *** */
/******i**#*******i*******
* PURPOSE:

* Initialize all panels in the resource file.

£ 3

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is deleted

* A new panel is added

* A panel’s name is changed (not title)

* For the panels:

* AcftLoad, AirData, BGData, BGShips, CloseAll, DelBG, DeleteSh,
* DelShip, Dig, F44Fuel, F76Fuel, LackData, NewBG, OrdData,

* OrdLoad, OrdSel, PrintJob, SaveNewB, SelBG, SetUpBGs, Ship,

*

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

3k 3 32 e 2 3e e 3 e 3¢ s Sk e e e afe e e 3k e 3k e 3 3 3 3e e 2 ke 3 3 e 3k e s e 3k e 3k sk o e e ok B e ke 3 abe ek ok e 3k s o 3k 3k ok e 3k ok R o ok o e ke ok ok

*/

#include “taeconf.inp”

#include “wptinc.inp”
#include “symtab.inc”
#include “global.h” /* Application globals */

/* One “include” for each panel in resource file */
#include “pan_AcftLoad.h”
#include “pan_AirData.h”
#include “pan_BGData.h”
#include “pan_BGShips.h”
#include “pan_CloseAll.h”
#include “pan_DelBG.h”
#include “pan_DeleteSh.h”
#include “pan_DelShip.h”
#include “pan_Dtg.h”
#include “pan_F44Fuel.h”
#include “pan_F76Fuel.h”
#include “pan_LackData.h”
#include “pan_NewBG.h”
#include *“pan_OrdData.h™
#include “pan_OrdLoad.h”
#include “pan_OrdSel.h”
#include “pan_Prindob.h”
#include “pan_SaveNewB.h”
#include “pan_SelBG.h"
#include “pan_SetUpBGs.h"
#include “pan_Ship.h”

FUNCTION VOID BGSetup_Initialize_All_Panels (resfileSpec)
TEXT *resfileSpec;
{
extern Id Co_Find (;
extern Id Co_New ();
Id vimCollection ;

/* read resource file */

vmCollection = Co_New (P_ABORT);
Co_ReadFile (vmCollection, resfileSpec, P_ABORT):

146

/* initialize view and target Vm objects for each panel */
AcftLoad_Initialize_Panel (vmCollection);
AirData_Initialize_Panel (vmCollection);
BGData_Initialize_Panel (vimCollection);
BGShips_Initialize_Panel (vmCollection);
CloseAll_Initialize_Pane} (vinCollection);
DelBG_Initdalize_Panel (vmCollection);
DeleteSh_Initialize_Panel (vimmCollection);
DelShip_Initialize_Panel (vmCollection);
Dig_Initialize_Panel (vmCollection);
F44Fuel_Initialize_Panel (vimCollection);
F76Fuel_Initialize_Panel (vmCollection);
LackData_Initialize_Panel (vimCollection);
NewBG_Initialize_Panel (vimCollection);
OrdData_Initialize_Panel (vimCollection);
OrdLoad_Initialize_Panel (vmCollection);
OrdSel_Initialize_Panel (vimCollection);
PrintJob_Initialize_Panel (vinCollection);
SaveNewB _Initialize_Panel (vmCollection);
SelBG_Initialize_ Panel (vimCollection);
SetUpBGs_Initialize_Panel (vmCollection);
Ship_Initialize_Panel (vmCollection);

}

147

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: Imakefile *** */

/* *** Generated: Nov 27 11:24:06 1992 *** */
/t**********t*********#*t****#******************#***tt***********#****t**#
* PURPOSE:

* This is the Imakefile of a C application generated by the TAE Plus

* Code Generator.

*

* REGENERATED:
* This file is generated only once.
*

* NOTES:

* 1. To build your application, type “make”. The Makefile generated
* by the TAE code generator invokes imake using this Imakefile to

* generate an application specific Makefile.

Py

* 2. If you change the name of your resource file or application, you
* will need to either edit this file, or just delete it and regenerate

* the code.

*

* 3, Edit this file to include your application specific source files.

A e ek 3 2 o 2 e 3k ok o e e 3k 3k e e e e a3 3 e e ake e e e sk e 28 e 3 s ek e e Ak 3 2 ok Ak dfe s s ok sk e ol e o 2k 3 e e A ok o e ek e ke ok ok ek ok ok ok
*/
#define GeneratedApplication

/* PROGRAMMER NOTE:

* Add a line ‘#include “Imake. RESFILENAME"™ for each resource file in
* your application.

x

#include “Imake . BGSewp”

/* PROGRAMMER NOTE:
* Insert application specific build parameters. These override
* definitions in the configuration files in $STAE/config.
*/
CDEBUGFLAGS =
LDDEBUGFLAGS =
APP_CFLAGS =
APP_LOAD_FLAGS =
APP_LINKLIBS = -L/h/Nauticus/libs -1Vids
APP_DEPLIBS = $(DEPLIBS)
APP_CINCLUDES = -Id(1 ACINC)
-I/h/Nauticus/include/vids/Vids.h\
-I//bglcss/scripts/gui/setup/bg.h
PROGRAM = BGSetup

/* PROGRAMMER NOTE:

* Add $(SRCS_RESFILENAME) and $(OBJS_RESFILENAME) for each resource file
* in your application.

*

GENSRCS = $(PROGRAM).c $(SRCS_BGSetup)
GENOBJS = $(PROGRAM).0 $(OBJS_BGSetup)

/* PROGRAMMER NOTE:

* Add your application specific srcs and object files (that are not
* generated by the code generator) here.

*/

APPSRCS =bg.c
APPOBIJS =bg.o

148

/* Macro (defined in TAEmake.tmpl) to generate Makefile targets.
*/
CApplication(3(PROGRAM))

149

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
[* *** File: pan_BGData.c *** */
f* *#** Generated: Jan 19 11:14:17 1993 *** ¥/
25 25 e 3 afe 3¢ 3k 2 2 2 s 2 2 o afe e e 3k 206 e 29K s 3 3k e 3 3k e e 3 a3k 3k 2 3 e 3k a Fe ok ake ek a8 e a3k ok Ak ok 3k 2 e s sk sk S Sl s e e ok K ok ok
* PURPOSE:
* This file encapsulates the TAE Plus panel: BGData
* These routines enable panel initialization, creation, and destruction.
* Access to these routines from other files is enabled by inserting
* ‘#include “pan_BGData.h™. For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id, Target, and View are provided.
ke e 2 de a2 e e 2 ok 2 2 3k ok 20 3 2k i age o ol ok 3k o i 2k i ol ke 2 sl ai 3k 3k sl 3 i X e e e e e 2 e 25 e e e e e e e e 2 e e e 3 e e e e 3 ek Rk

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_BGData.h”

/* One “include” for each connected panel */
#include “pan_BGShips.h”

#include “pan_DeleteSh.h”

#include “pan_Ship.h”

/*BERN*/
#include “pan_SetUpBGs.h”

/*BERN*/

extemn void CancelBG();
extern int GetBG();

extern int GetBGs();

extern void ShowBG();
extern void ShowBGShips();

Id BGDataTarget, BGDataView, BGDatald;
/* BGDataDispatch is defined at the end of this file */

/***********************#***

* Initialize the view and target of this panel.

*/

FUNCTION VOID BGData_lnitialize_Panel (vmCollection)
Id vmCollection;

{
Id Co_Find ();

BGDataView = Co_Find (vmColiection, “BGData_v"™),
BGDataTarget = Co_Find (vinCollection, “BGData_t");
)

/********************************#******t*****************t***t********##*

* Create the panel object and display it on the screen.
*
FUNCTION VOID BGData_Create_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;
{
BERN/
int BGIndex;
BGInfo BGs[MAXBGS];

if (BGDatald)
printf (“Panel (BGData) is already displayed.\n");

150

else
BGDatald = Wpt_NewPanel (Default_Display, BGDataTarget,
BGDataView, relativeWindow, BGDataDispatch. flags);

BGlIndex = GetBGs(BGs);

BGIndex = GetBG(StringParm(SetUpBGsTarget,”BGList™), BGIndex);
ShowBG(BGs, BGIndex, BGDatald);

ShowBGShips(BGIndex, BGDatald, “BGShips”);
}

/***

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID BGData_Destroy_Panel ()

{
CancelBG(BGDatald);
Wpt_PanelErase(BGDatald);
BGDatald=0;

}

/*******#**

* Connect to this panel. Create it or change it’s state.

%k

FUNCTION VOID BGData_Connect_Panel (relativeWindow, flags)
Window relativeWindow;

COUNT flags;

{
if (BGDatald)
Wpt_SetPanelState (BGDatald, flags);
else
BGData_Create_Panel (relativeWindow, flags);
}

/***

* Handle event from parameter: AddShip
*/

EVENT_HANDLER AddShip_Event (value, count)
TEXT *valuef}; [* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
BGShips_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

/****************************#***tt***********************##**t***********
* Handle event from parameter: Close

*/

EVENT_HANDLER Close_Event (value, count)
TEXT *value(]; [* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
BGData_Destroy_Panel ();

/* End generated code for Connection */

151

/* s e e e e 3k s af ok e 3 2 o sk e e o s 3 2 3k 3k skl 3k o 3 e ok 3 e o s sl 3k e i ke e S 3 e ol e s ofe el s e s e ol 3 e ok e e ok ek ok deok ok

* Handle event from parameter: Delete
*x

EVENT_HANDLER Delete_Event (value, count)
TEXT *value(}; [* string pointers */
FUNINT count; /* num of values */
{
/* Begin generated code for Connection */
DeleteSh_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */
]

/* afc 2 ke 2 a3k ok 2 ok e o e ok 2k e 22 ok k s 3¢ e 3 e ke 2l 3 2k e e 3 o8 3k o 3 2k 3 ok 3 kol s ok ok 2k 2k o Sk o e o 2k 3K ok ok o e k3 ok 3k 3k ok ke ok ok ok ok ok ek

* Handle event from parameter: Edit
*

EVENT_HANDLER Edit_Event (value, count)
TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */
{
/* Begin generated code for Connection */
Ship_Connect_Panel (NULL, WPT_PREFERRED).
/* End generated code for Connection */

}

/* ok ok e s 3¢ 3k sk sfe ok 3k e 3 2k 396 ek s e s e 3 3 b s 3k 2k o s 3 3 e 3 2 e e e o ok e e e ke e e 2 s b e s e e 3 3¢ e 3 e S e e e e e e e 2 e ek e ek

* Handle event from parameter: Help
%x*

EVENT_HANDLER Help_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{
}

/* she 3k 2 ke 3 3 S 3 e 3 3k 3k e 2 e s ok e s e e 3k e e 3 e ok e 2k 3 2k 3 e 2k 3k 3K e o e e 2 Ak e ok ek 3k sk e 3 e e e ke e e e 3 ko o e sk ok okedk ok ok
* Handle event from parameter: Save
*

EVENT_HANDLER Save_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{
}

struct DISPATCH BGDataDispatch([] = {

{*“AddShip”, AddShip_Event},

{*“Close”, Close_Event},

{“Delete”, Delete_Event}.

{*“Edit”, Edit_Event},

{“Help”, Help_Event},

{“Save”, Save_Event},

{NULL, NULL} /* terminator entry */

152

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: pan_BGData.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** ¥/
/********#*******t********************************l*****#*****************
* PURPOSE:

* Header file for panel: BGData

€»*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* BGData

*

* CHANGE LOG:

* 19-jan-93 Initially generated... TAE

sk o e ke ke 3 3 o a ke 3k ok 2k e ok s e 3 2 ol sk 3 36 o 2k 3 e e 3k 23k 3 ok e e 4 2 e o 3k s S 3 3k 3ok ok ke ak sk ol ok 3k 3 2Rk e ok o A ok ok ok ok ok Xk kK ok ok ok ok Xk

*/

#ifndef I_PAN_BGData /* prevent double include */
#define | PAN_BGData 0

/* Vm objects and panel Id. */
extern Id BGDataTarget, BGDataView, BGDatald;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH BGDataDispatchf];

/* Initialize BGDataTarget and BGDataView */
extern VOID BGData_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID BGData_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID BGData_Destroy_Panel ();

/* Connect to this panel. Create it or change it's state */

extern VOID BGData_Connect_Panel ();
#endif

153

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: pan_BGShips.c *** */

f* *** Generated: Jan 19 11:14:17 1993 *** */
/*#***#****t*************t****t***
* PURPOSE:

* This file encapsulates the TAE Plus panel: BGShips

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘#include “‘pan_BGShips.h™’. For more advanced manipulation of the panel

* using the TAE routines, the panel's Id, Target, and View are provided.

3k e e 3 e e 3k 3k 3 ¢ e e e 2 o ok e 3 e e 3k e e e e e e e e e ok kR ok eakeoofeoleokoke skl ol ke e e ak e 3k e e e e el e e sk e ol ol sk ok ok ek e of ok K ok

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_BGShips.h”

/* One “include” for each connected panel */
#include “pan_Ship.h”

/*BERN*/

#include “pan_NewBG.h"
#include “pan_SetUpBGs.h”
#include “pan_BGData.h™

extera void ShowNavyShips();
extern int GetBGs();

extern int GetBGShips();
extern int GetBG();

extern void ShowBGShips();
extern char* AddShip();
extern void SaveBGShips();

1d BGShipsTarget, BGShipsView, BGShipsld;
/* BGShipsDispatch is defined at the end of this file */

/*********i***t*****
* Initialize the view and target of this panel.
*/
FUNCTION VOID BGShips_Initialize_Panel (vmCollection)
Id vmCollection;

{

1d Co_Find ();

BGShipsView = Co_Find (vinCollection, “BGShips_v™);
BGShipsTarget = Co_Find (vmCollection, *BGShips_t");
}

/*****t***********************************t*****t********************#****
* Create the panel object and display it on the screen.
*

FUNCTION VOID BGShips_Create_Pancel (relativeWindow. flags)
Window relativeWindow;

COUNT flags;

{

BERN/

TEXT* bgname(1];
int BGIndex = 0;
if (RGShipsid){

154

printf (“Panel (BG3hips) is already displayed.\n™);

}else(
BGShipsld = Wpt_NewPanel (Default_Display, BGShipsTarget,
BGShipsView, relativeWindow. BGShipsDispatch, flags);

/*pass new BG Name from appropriate panel to BG Ships panel*/
if NewBGId){

strcpy(bgname[0], StringParm(NewBGTarget,”"Name™));
} else {

bgname[0] = StringParm(BGDataTarget,”"Name™).

Vm_SetString(BGShipsView."Name.textstrs”.1.bgname . P_UPDATE);
Wpt_ViewUpdate(BGShipsld,"Name”, BGShipsView,”Name");
ShowNavyShips(BGShipsld,”NavyShips™);

if (BGDatald){
BGIindex = GetBG(bgname([0].BGlndex);
ShowBGShips(BGIndex, BGShipsld. “BGShips™);
}
}
}

/* 30 2 3 e ke e e 2 e ok 2 e e e e e e 3 e 3k e e e e s e 3 e e e e ek sk e ek 2k i e sk ke Sk k2 e 3 e ek 3 i sl e e e e Aok ok e ak ok o ok ok

* Erases a panel from the screen and de-allocate the associated panel
* object.
*
FUNCTION VOID BGShips_Destroy_Panel ()
{
Wpt_PanelErase(BGShipsld);
BGShipsld=0;
}

/* 0 3k e e sk 3k sk 2k 3¢ o e sk 3k e 3 3 ok s o 3 ke e e 2 ok o e Fe e e e 3 ek e e 3 e ok sk Sk e e e s 3 ke sk e ke e e ok ke e ok e e ek ok e ok ok ok d ok

* Connect to this panel. Create it or change it’s state.
Y

FUNCTION VOID BGShips_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (BGShipsld)
Wpt_SetPanelState (BGShipsld, flags);
else
BGShips_Create_Panel (relativeWindow, flags);
}

/* 3¢ 25 2 e ok o s 3¢ 2 o e e 3 e o ke 3k 2 e 3 ek 3 e ke s e ok s 3k Ak ek sk sk s o ok ok sk ok sk e ke e s ok sl o e o s e ke ok ok ke ke e ok ok ke Rk ok ok ok

* Handle event from parameter: AddShipToBG

*/

EVENT_HANDLER AddShipToBG_Event (value. count)

TEXT *value(]: /* string pointers */

FUNINT count; /* num of values */

{
/*BERN*/
BGInfo BGs[MAXBGS];
F76ShipTypeinfo F76TableMAXSHIPTYPES|;
int NewBG:
it NewShip:

155

NewBG = GetBGs(BGs);
NewBG = GetBG(StringParm(NewBGTarget."Name™), NewBG);
NewShip = GetBGShips(BGs, NewBG, F76Table);

AddShip(BGs,NewBG NewShip,
StringParm(BGShipsTarget,”NavyShips™));

SaveBGShips(BGs, NewBG);

ShowBGShips(NewBG BGS1ipsld, “BGShips™);
}

/* 3k 3k e 3k 25 2 38 3 e 2 2 3k 2k 3 3 e ke 3 o 2 ke e s 3k ke s e 3 ok 2k 3¢ a2 2k sk 3k 38 36 e 3k ke 3 ok e e 3k 2 3 e 3k ek sk o sk S e e e ok e e A ek 3k ok ok ok

* Handie event from parameter: Close
*

/

EVENT_HANDLER Close_Event (value, count)
TEXT *valuel]; [* string pointers */
FUNINT count; /* num of values */
{

/* Begin generated code for Connection */
BGShips_Destroy_Panel ():
/* End generated code for Connection */

JE Rk ok ok ok ok kR ok kR ok bk Kk kR ko Rk Rk Rk

* Handle event from parameter: EditShip
*/

EVENT_HANDLER EditShip_Event (value, count)
TEXT *valuel[l; [* string pointers */
FUNINT count; /* num of values */
{

/* Begin generated code for Connection */
BGShips_Destroy_Panel ();

Ship_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

SR Rk ook ook kool OOk ook Rk ok ok R R Rk koK ok
* Handle event from parameter: Help
*/

EVENT_HANDLER Help_Event (value, count)
TEXT *value[]; [* string pointers */
FUNINT count; /* num of valyes */
{
}

/* 4 ke 2 0 3k 35 3 2 e 2 3k 2 2 2fe e s o sk ok o ok sk S ke 5 s e ok 2 2k e 3k 3k e sk 3k e e s ke sk e e e sk e e e ok ol ke sk sk e ok ok ok sk e e ek ak s ok ke ek ok
* Handle event from parameter: RemoveFromBG

*/

EVENT_HANDLER RemoveFromBG_Event (value, count)
TEXT *valuel); J* string pointers */
FUNINT count; /* num of values */

{
}

ke o s o e 3 e ofe o ok ok e ok sk e e e o 3k ok e ke e ok 3 s s ol e ok 3K ofe e o e ok 3 o o ok ok oK ik ok ook ke ak o ki ok ok ai 3k koK ook sk 3 koK ok ok

* Handle event from parameter: SaveBGShips
*/

EVENT_HANNDLER SaveBGShips_Event (value, count)

156

TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */
{

}

struct DISPATCH BGShipsDispatch{] = {
{*AddShipToBG”, AddShipToBG_Event}.
{“Close”, Close_Event},
{“EditShip”, EditShip_Event},
{*Help”, Help_Event},
{“RemoveFromBG”, RemoveFromBG_Event},
{“SaveBGShips”, SaveBGShips_Event},
{NULL, NULL} /* terminator entry */

157

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *#** ¥/

/* *** File: pan_BGShips.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */
/****************#**
* PURPOSE:

* Header file for panel: BGShips

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

* BGShips

% »
* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

S 3 2 ak 3 3 e e e 25 2k 3 e 3k e 3k 2 3k e 3 2 a5 ok ok 3 3 3 a3k ok ok e 3k 2k s e ok 2k 3k e 3 e ke ok e 3k 3k e e e e e e ke s Ak o e e e e ko ok e ok e e e ok ok ok ok

*/

#ifndef I_PAN_BGShips [* prevent double include */
#define I_PAN_BGShips 0

/* Vm objects and panel Id. */
extern Id BGShipsTarget, BGShipsView, BGShipsld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH BGShipsDispatch(];

/* Initialize BGShipsTarget and BGShipsView */
extern VOID BGShips_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID BGShips_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID BGShips_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */
extern VOID BGShips_Connect_Panel ();
#endif

TToTT T T

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** %/

/* *** File: pan_CloseAll.c *** */

/* *** Generated: Jan 19 11:14:17 1993 *** */
/***
* PURPOSE:

* This file encapsulates the TAE Plus panel: CloseAll

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘“$include “pan_CloseAllLh™". For more advanced manipulation of the panel

* using the TAE routines, the panel’s Id, Target, and View are provided.

2k 3 ok 3k 3 e 3k 30 3 3 ok e e e 3k s sfe e e e e e s 2k e 2l e e ok e e 2 3k e she e a3k e 3k e e e ke e e ke e 2 e 3k e e ek sbe e e e b e e ok i e e o e g ok o ok o ok 3k

*/

#include “taeconf.inp”
#include *“wptinc.inp”
#include “global.h” /* Application globals */

#include *pan_CloseAll.h”

Id CloseAllTarget, CloscAllView, CloseAllld;
/* Close AllDispatch is defined at the end of this file */

/***
* Initialize the view and target of this panel.
*

/
FUNCTION VOID CloseAll_Initialize_Panel (vmCollection)
Id vmCollection;

{

Id Co_Find (;

CloseAllView = Co_Find (vmCollection, “CloseAll_v™);
?loseAllTarget = Co_Find (vmCollection, “CloseAll_t”);

>k e 3k e e 2k 2 e 3 sk e e o s e ake e 3 sk e 3k e e 3k 3¢ 2 30 38 e 3k e e e e 3 3 e e e 2k 3 e e e 3k 2 e 3 e e e 3 ke 3 3k sk ek 3 2 e 2k e ok e ek e ks koK
* Create the panel object and display it on the screen.
*/

FUNCTION VOID CloseAll_Create_Panel (relatveWindow, flags)
Window relativeWindow;
COUNT flags:

{
if (CloseAllld)
printf (“Panel (CloseAll) is already displayed.\n™);

CloseAllld = Wpt_NewPanel(Default_Display. CloseAllTarget,
CloseAllView, relativeWindow. CloseAllDispatch, flags);

else

}

/**t**
* Erases a panel from the screen and de-allocate the associated panel

* object.

*

FUNCTION VOID CloseAll_Destroy_Panel ()

{
Wpt_PanelErase(CloseAllld);
Close Allld=0;

}

/**********************************#**************************************

* Connect to this panel. Create it or change it’s state.
*/

FUNCTION VOID CloseAll_Connect_Panel (relativeWindow, flags)

159

Window relativeWindow;
COUNT flags;

{
if (CloseAllld)
Wpt_SetPanelState (CloseAllld, flags);
else
CloseAll_Create_Panel (relativeWindow, flags):

/* a0e b 2 3¢ 2 e o 2 3 2k 2 3k 2 35 3 3 2 2 ok ¢ 3k e 3 e ke 3l e o 3k 3k e ok ke 3k e 2k 2B e e ke 23k 23k 3k 2k e e 2 e 3k 2k e 3 3 e ke e 3 3k e ke ok ok ek ok s 2 ke ek
* Handle event from parameter: message

*/

EVENT_HANDLER message_Event (value, count)
TEXT *valuel]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
if (count <= 0)

; /* null value or no value */
else if (s_equal (value[0], “OK™))

{
CloseAll_Destroy_Panel ();
SET_APPLICATION_DONE:

}
else if (s_equal (value[0], “Cancel™))

CloseAll_Destroy_Panel ();
}

/* End generated code for Connection */
}

struct DISPATCH CloseAllDispatch{] = {

{“message”, message_Event},

{NULL, NULL} /* terminator entry */
|5

160

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

f* *** File: pan_CloseAllLh *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */
/**i**
* PURPOSE:

* Header file for panel: CloseAll

%*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

: CloseAll

* CHANGE LOG:

* 19-Jan-93 Initially generated... TAE

e 2 e 2 e 3k 3¢ 3k e e ok s Sk 2k 2K e e 3¢ 28 2 e ke e 3 e o 3 ke e e 3 2 3 2 ke 2k 3K e 3k sk 3k e 3k 3k ok ok 3 3k ek o 3k e e ok ok ok 3 3K 3 ok ke ol e 3k 3k ek ok 3 ok ok

*/

#ifndef I_PAN_CloseAll /* prevent double include */
#define I_PAN_CloseAll 0

/* Vm objects and panel Id. */
extern Id CloseAllTarget, CloseAllView, CloseAllld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH Close AllDispatch(];

/* Initialize CloseAliTarget and CloseAllView */
extern VOID CloseAll_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID CloseAll_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID CloseAll_Destroy_Panel ().

/* Connect to this panel. Create it or change it's state */

extern VOID CloseAll_Connect_Panel ();
#endif

161

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/¥ *** File:

pan_DelBG.c *** */

/* *** Generated: Feb 8 10:13:45 1993 *** */

/* k2 2 2 382 30k e s 2 6 e 3¢ 3 3 e e 3 ke e e 2k e 35 2k 2he e 5k 2 2he 2 e 2 e e ke 3 e 3 e e e 3l s 0 e 5 3k e 3 e e o e e i ke ke e ade e ok ok 3 ok e 3k ok
* PURPOSE:

* Thas file encapsulates the TAE Plus panel: DelBG

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘#include “‘pan_DelBG.h™". For more advanced manipulation of the panel

: using the TAE routines, the panel’s Id, Target, and View are provided.

* For the panel items:
* Message
*

* CHANGE LOG:
* 8-Feb-93 Initally generated... TAE

3 s afe e e 2 3 ek ok e 2k 3 e 2 o e ok e e 3 3 3 ok 3 e o 3k S e 3 e 3 e 2k e ok o o e ke s 3 ek 3 ok ok e ke sk ke 3k sk e e oo 3 o Ak ak ok dk ok sk ok ok

*/

#include
#include
#include
#include

“taeconf.inp”

“wptinc.inp”

“global.h” /* Application globals */
“pan_DelBG.h”

/* One “include” for each connected panel */

/*BERN*/

#include

extern
extern
extern
extern
extern

“pan_SetUpBGs.h”

int GetBGs();

int GetBG();
void DeleteBG();
void SaveBGs();
void ShowBGs();

Id DelBGTarget, DelBGView, DelBGId;
/* DelBGDispatch is defined at the end of this file */

/* 0k e 3k 3 ok 3k e e ke 3¢ ke ok sk e e ok 3 e 3 sk 3 e 2 e e 2 e e e e e 2 3k sk 3 ok e 3k e 3k sk Sl e e e e ok 2 e el e e e e e Bk e e e 2k e e 3k e ok e e sk K
* Initialize the view and target of this panel.

*/

FUNCTION VOID DelBG_Initialize_Panel (vmCollection)
Id vmCollection;

{
Id Co_Find O;

DelBGView = Co_Find (vmCollection, “DelBG_v™);
DeiBGTarget = Co_Find (vimCollection, *DelBG _t™);

}

/* e 2 20 e 2k 3 3 6 3¢ e 3 2 b e e e e e e e e e s b e e e e 30 3 e e e 3 e 3 e e e e e e e e e 3 e e e e e s e e e ek e e e e 3k 3k e ok e ok ok ok
* Create the panel object and display it on the screen.
*

FUNCTION VOID DelBG_Create_Panel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;

{

if (DelBGId)

printf (“Panel (DelBG) is already displayed.\n™);

else

162

DelBGId = Wpt_NewPanel (Default_Display, DelBGTarget, DelBGView,
relativeWindow, DelBGDispatch, flags);
}

/* b 2k ke 2 e 3 e 2 fe e 2k 2k e 3 3 2k 2 3 2 o 3k e e 3 3k e e e 3 e 3k e A e ok ok Ak 3k ok 3 R s e 3k k3K ik 3 3k 3k e R o s e e e ok o ook ook ok sk ok ko ok ok

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID DelBG_Destroy_Panel ()

{
Wpt_PanelErase(DelBGId);
DelBGId=0;

}

/* 3¢ 3 e 2 9 e sk s 3 S 26 3 e e ok sk e e 3 e e 3 3 e 2k e e 2k 3 2k e e 3 2 2 3 o e bk 3 ok s ke 2 3k e s ke sk ol 3 o e e s e ak ok 3 3 e e 3 o ok ok ok o ok ke ok

* Connect to this panel. Create it or change it’s state.
x

FUNCTION VOID DelBG_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (DelBGId)
Wpt_SetPanelState (DelBGId. flags);
else
DelBG_Create_Panel (relativeWindow, flags);

/* a0 zhe e 2 e 2 3 e o 3 e 3k b 2 ek sk s e e e e ke 3 e e e e e 3k e 2k 3 b 3k e e ek ke s 3k ok e 2 ke e 3k e ol sk 3k e Sk i e o e e ok o 3 ke dkok ek
* Handle event from parameter: Message

*/

EVENT_HANDLER Message_Event (value, count)
TEXT *value[]; J* string pointers */
FUNINT count; /* num of values */
{

[*BERN*/

BGInfo BGs[MAXBGS];
int BGToDelete;

int BGIndex;

/* Begin generated code for Connection */
if (count <= 0)
: /* null value or no value */
else if (s_equal (value[0], “OK™))
!{BGIndex = GetBGs(BGs);
BGToDelete=GetBG(StringParm(SetUpBGsTarget,”"BGList™), BGIndex);
DeleteBG(BGs.BGToDelete);
SaveBGs(BGs);
ShowBGs(SetUpBGsld,”"BGList™);

DelBG_Destroy_Panel ();

]
else if (s_equal (value[0]. “Cancel™))
{

163

DelBG_Destroy_Panel ();
}

/* End generated code for Connection */
}

struct DISPATCH DelBGDispatch[] = {

{“Message”, Message_Event},

{NULL, NULL} /* terminator entry */
b

[* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** Fjle: pan_DelBG.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */
/***
* PURPOSE:

* Header file for panel: DelBG

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

* DelBG

*

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

k3 e e ok ke ke o e 3 e e e e e e e alk e ok sk sk e 2k e ek ks 3 sk 6 e ke k3 e ok e ke ok 2k 3k s 3k 3k o 3 i ok ke 3k e ok ok 3k 3k e k3 3k 3k a3 A e e e e ke ok ok

*/

#ifndef I_PAN_DelBG /* prevent double include */
#define _PAN_DelBG 0

/* Vm objects and panel Id. */
extern Id DelBGTarget, DelBGView, DelBGId;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH DelBGDispatch];

/* Initialize DelBGTarget and DelBGView */
extern VOID DelBG_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID DelBG_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID DelBG_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID DelBG_Connect_Panel ();
#endif

165

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
f* *** File: pan_Dtg.c *** ¥/
/* *** Generated: Feb 8 10:13:45 1993 *** */

/**#**t*****************************

* PURPOSE:

* This file encapsulates the TAE Plus panel: Dtg

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* *#include “pan_Dtg.h™". For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id, Target, and View are provided.
*

* For the panel items:
* Message
*

* CHANGE LOG:
* 8-Feb-93 Initially generated... TAE

s 3 e e o 2 o e e ok e 3 s ofe e sk e e ok e e e e o ke 3 3 o 3k 3 sl S e ol 3 3 o 3 e i e ke s sk Sl e e s e e e e ol e e e e e s o e e s e o e e e sk ok e ok 3k ke sk
*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “global.h” /* Application globals */
#include “pan_Dtg.h”

/* One “include” for each connected panel */

Id DtgTarget, DtgView, Digld;
/* DigDispaich is defined at the end of this file */

/*********#**************#****************************t*****t*************
* Initialize the view and target of this panel.
2%

/
FUNCTION VOID Dtg_Initialize_Panel (vimCollection)
Id vinCollection;

{

Id Co_Find ();

DtgView = Co_Find (vmCollection, “Dig_v™);

DtgTarget = Co_Find (vmCollection, “Dtg_t"):

}
/**t**********************

* Create the panel object and display it on the screen.
*

FUNCTION VOID Dtg_Create_Panel (relativeWindow, flags)
Window relativeWindow;

COUNT flags;
{
if (Dtgld)
printf (“Panel (Dtg) is already displayed.\n™);
else

Dtgld = Wpt_NewPanel (Default_Display, DtgTarget. DigView,
relativeWindow, DigDispatch, flags):
}

/**************#************#******###******#**************t***t***#******

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID Dtg_Destroy_Panel ()

166

. 4

{
Wpt_PanelErase(Dtgld);
Dtgld=0;

}

/* 3 2 25 2 2 30k 3 ke 2 e e e 2 e e sk 3 Sk o ke e 3 3¢ ke s v e e 3 e e ke ke 3 o e e e e ke e e sk e e 3k 3 a3k o 3k 3k e e ok s e e e e e ke ke ek e ok e ok ok ok Ak

* Connect to this panel. Create it or change it’s state.
*

FUNCTION VOID Dtg_Connect_Panel (relativeWindow, flags)
Window relaiveWindow;

COUNT flags;
{
if (Digld)
Wpt_SetPanelState (Dtgld. flags):
else

Dtg_Create_Panel (relativeWindow, flags);

/* 0 2fe e 2 3 2k e e 2k 3 3k 3 e 2 e ok 2k 3k e 3k a3k 3 e o sk 3k 2k 3k e afe kel e ok Ak e 3k e ke ke ak < ale afe e e e e e a3 3k Ak 3k ok ke ik sl ok 3K 3k o ok ok ok K

* Handle event from parameter: Message

*/

EVENT_H:\NDLER Message_Event (value, count)
TEXT *valuel); /* stning pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
if (count <= 0)

: /* null value or no value */
else if (s_equal (value[0], “OK™))

{

Dtg_Destroy_Panel ():

}
else if (s_equal (value[0], “Cancel™))

{

Dtg_Destroy_Panel ();

}

/* End generated code for Connection */

}

struct DISPATCH DitgDispatch{} = {

{“Message”, Message_Event},

{NULL, NULL} f* terminator entry */
}:

167

/* *** TAE Plus Code Generator version Tue May 2o 14:13:27 EDT 1992 *** */

[* *** File: pan_Dtg.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */
/**********‘***A****************#*
* PURPOSE:

* Header file for panel: Dtg

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

* Dig

* -
* CHANGE LOG:

* 19-Jan-93 Initially gencrated... TAE

a3l aje e 23 e sje 2 3Rk e 2 2 ke ke e e e ke 3¢ ke ek e e e 3 ke e 3k e ok e e ok 3 e ak e e ok ke e ok e 2k e s g 3k sk sk o5 e e 3 B i e ok Ak e 3k 3K 3k 2k e ok
*/

#ifndef I_PAN_Dtg /* prevent double include */

#define _PAN_Dtg 0

/* Vm objects and panel Id. */
extern Id DtgTarget, DigView, Dtgld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH DtgDispatch(];

/* Initialize DtgTarge. and DtgView */
extern VOID Dtg_Initialize_Panel ();

/* Creae this panel and display it on the screen */
extern VOID Dty_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID Dtg_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */
exterr VOID Dtg_Connect_Pane! ();
#endif

168 !

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
[* *** File: pan_LackData.c *** */
/* *** Generated: Feb 8 10:13:45 1993 *** */
/***
* PURPOSE:;

* This file encapsulates the TAE Plus panel: LackData

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* *#include “pan_LackData.h™". For more advanced manipulation of the panel

* using the TAE routines, the panel’s 1d, Target, and View are provided.

*

* For the panel items:
* Message
*

* CHANGE LOG:
* 8-Feb-93 Initially generated... TAE

a2k 3 ok e 2 ok e ok 2k 2k 2 3k o e ke 3k e 3 sk e sk e sk e ok o ke 3 S e s ek e ke Ak ke e ke sk e 3 e ok ok she ok e ok ok 3k ok 3 ok 3k ok 2 o i 3k kK 3k 2 sk i ook ok ok kR ok

*/

#include “tacconf.inp”
#include “wptinc.inp”
#include “global.h” /* Application globals */

#include “pan_LackData.h”
/* One “include” for each connected panel */

I1d LackDataTarget, LackDataView, LackDatald;
/* LackDataDispatch is defined at the end of this file */

/***

* Initialize the view and target of this panel.
*

FUNCTION VOID LackData_Initialize_Panel (vinCollection)
Id vmCollection;

{
Id Co_Find ();

LackDataView = Co_Find (vmCollection, “LackData_v”):
LackDataTarget = Co_Find (vmCollection, “LackData_t");
}

/**#**

* Create the panel object and display it on the screen.
*

/

FUNCTION VOID LackData_Create_Panel (relativeWindow. flags)
Window relativeWindow:
COUNT flags:

{
if (LackDatald)
printf ("Panel (LackData) is already displayed\n™);
else
LackDatald =Wpt_NewPanel (Default_Display, LackDataTarget,
LackDataView. relativeWindow. LackDataDispatch, flags):
}

/*******************#*t**t***#*#t****u********t****‘********t#**tt#t**t‘**

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/
FUNCTION VOID LackData_Destroy_Panel ()
{

169

Wpt_PanelErase(LackDatald);
LackDatald=0;
}

/* 3 36 e 2k e 2k e e 3 e 2 e 3 e e ke e e 3k e e e 36 e e e e e e e e ek 3 e e e o 3k e 3k ek e s sk e ok 3k ok 3k 2k ik 3k sk ok ok ok ek o 3k ak ko ok ok
* Connect to this panel. Create it or change it’s state.
%

/

FUNCTION VOID LackData_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (LackDatald)
Wpt_SetPanelState (LackDatald, flags);
else
LackData_Create_Panel (relative Window, flags):
}

[rkkkdoRkokk ok dokok kiR ok ok ook ik koK ko ok sk okokok kR ok ok ko ekl ok okok ok ok ok ok ok
* Handle event from parameter: Message

%k

EVENT_HANDLER Message_Event (value, count)
TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */

if (count <= Q)
; /* null value or no value */
else if (s_equal (value[0], “OK™))
{
LackData_Destroy_Panel ();

}
else if (s_equal (value[0], “Cancel™))
{

LackData_Destroy_Panel ();
}

/* End generated code for Connection */

struct DISPATCH LackDataDispatch[] = {

{*“Message”, Message_Event},

{NULL,NULL} /* terminator entry */
b

170

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: pan_LackData.h *** */

[* *** Generated: Jan 19 13:12:17 1993 *** */
/*********************#***
* PURPOSE:

* Header file for panel: LackData

sk

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* LackData

*

* CHANGE LOG:
* 19-Jan-93 Initially generated... TAE
sk e 3k 3k ke 3k e 2 2 e e ke a2 s 3 e 2 e 2 e 2k e 3 ke e 3 e e e e e e e e e 3 ok ok o 3k A ek 3k e e 3k ke ke sk kol ok ok ke 3 i e o 2 ok ok e s o e o

*/

#ifndef I_PAN_LackData /* prevent double include */
#define I_PAN_LackData 0

/* Vm objects and panel Id. */
extern Id LackDataTarget, LackDataView, LackDatald;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH LackDataDispatch[);

/* Initialize LackDataTarget and LackDataView */
extern VOID LackData_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID LackData_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID LackData_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID LackData_Connect_Panel ();
#endif

171

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: pan_NewBG.c *** */
/* *** Generated: Jan 19 11:14:17 1993 *#* */
/* e 2 e e 2k e 2 2 3¢ 2 s 3 e 2k e e s 3 e e 3 e e 2 e 2 e e 2 e 3k ake ofe e i 24 e 2k sl e e e e g ok sk e ok e sk s g e 3k 3 e ek ek e ok e ke ok ok e ok 2k
* PURPOSE:
* This file encapsulates the TAE Plus panel: NewBG
* These routines enable panel initialization, creation, and destruction. .
* Access to these routines from other files is enabled by inserting
* *#include “*pan_NewBG.h™". For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id, Target, and View are provided.
e aje e 3 e 3 2 29 2k 2 e 3 e e 2k 2 3 2k 20 e e e e sl e sk e 2k e 3k 3k ok ke aie 2l 2k e e e e sk 3 2 e 20 2 ok ke 2 ok a3k 3kl e e 3k ke 2 3 e ok ok ak ok ok ok ok ook

*/

#include “tacconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_NewBG.h”

/* One “include” for each connected panel */
#include “pan_BGShips.h”

[*BERN*/

#include “pan_LackData.h”
#include “pan_SetUpBGs.h"™
#include “pan_SaveNewB.h”
[*BERN*/

extern int GetBGs();
extern int MakeBG();
extern void SaveBGs();

int SaveFlag = 0;

Id NewBGTarget, NewBGView, NewBGld;
/* NewBGDispatch is defined at the end of this file */

/* e e 3 3 e e e e 3 2 3 Sl e i 3k ok 3 e 20 e e e 3 e e e e ok e e 3 e ki R e e e e e ek e e ok ok 3k e i e e 3 3 ok ol a3k 23 ke ke ke ek 3k ook ok ok ok
* Initialize the view and target of this panel.
*/
FUNCTION VOID NewBG_lnitialize_Panel (vinCollection)
Id vinCollection;

{
Id Co_Find ():

NewBGView = Co_Find (vinCollection, “NewBG_v™);
NewBGTarget = Co_Find (vmCollection, *NewBG_t"™);
}

/* e e e o ok e ke ke e ke 3k e e a3k e e s e b ke ok e 3k 3k 3k sk i ok ol i e ol e e k e sk kool 2k s sk e ok ok o sk ok ok e 3 ofe s sl ke sl sk i sl ofe ae sk sk sl ol ok e ok
* Create the panel object and display it on the screen.
*/
FUNCTION VOID NewBG_Create_Panel (relativeWindow, flags)
Window relativeWindow;

COUNT flags: *
{
if (NewBGId)
printf (“Panel (NewBG) is already displayed\n™);
else
NewBGId = Wpt_NewPanel (Default_Display, NewBGTarget. NewBG View, .

relativeWindow, NewBGDispatch, flags);
}

/**#******************************

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID NewBG_Destroy_Panel ()

{
Wpt_PanelErase(NewBGld);
NewBGld=0;

}

e ok o ek o 3 o 26 o 3 o 3 s 3 2k e ok ok s ke 3k 3K ke sk 3 ok sk e 3k 2 ke ok ok e 2k e e ok 3 ok 3 ok 3k e ol 3k sk 3 3 3K ok ok e e 3k ak ok 3k e e ak e ke ok sk o e e ke ok

* Connect to this panel. Create it or change it’s state.
*

FUNCTION VOID NewBG_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (NewBGld)
Wpt_SetPanelState (NewBGld. flags);
else
NewBG_Create_Panel (relativeWindow, flags);

}

/*********#**********#**
* Handle event from parameter: Close

*/

EVENT_HANDLER Close_Event (value, count)
TEXT *value(]: /* string pointers */
FUNINT count; /* num of values */

if (SaveFlag == 1){
/* Begin default generated code */
NewBG_Destroy_Panel ();
/* End generated code for Connection */

SaveNewB_Connect_Pane}(NULL, WPT_PREFERRED);

} else {

}
}

3k 3 3 e aje e 3k 20 ok 2 3 o 3 e Ak e e e Sk e 3k e e ke e e 2 e 3k ok 3 e ok e 3k 2k e e 3 ek 3 3k ok sk 3 ke 3 ok e e 3k ok ke ok ok ek e e ok ok 3 ok 3k 3 3k ok 3ok ok ok
* Handle event from parameter: Help

*/

EVENT_HANDLER Help_Event (value, count)
TEXT *valuef]; /* string pointers */
FUNINT count; /* num of values */

{
}

/************#**********t*************************************#*********#*
* Handle event from parameter: Save

*/
EVENT_HANDLER Save_Event (value, count)
TEXT *value(]; /* string pointers */
FUNINT count; /* num of values */
BGlInfo BGs{MAXBGS];
int BGIndex;

173

BGlindex = GetBGs(BGs);

if (MakeBG(BGs,BGIndex,StringParm(NewBGTarget,"Name™),

StringParm(NewBGTarget,” Designation™),
RealParm (NewBGTarget,”FuelRes™),
RealParm (NewBGTarget,”CLFFuelRes™),
RealParm (NewBGTarget,”OrdRes”),
RealParm (NewBGTarget,”CLFOrdRes”),
RealParm (NewBGTarget,”"MaxF76™),
RealParm (NewBGTarget,”"MaxF44”),
RealParm (NewBGTarget,”StationSpeed™),
RealParm (NewBGTarget,”UnrepSpeed”),
RealParm (NewBGTarget,”AcftShipSpeed™))) {

SaveBGs(BGs);

[*refresh the BGList in setupbgs panel*/
BGIndex = GetBGs(BGs);

ShowBGs(SetUpBGsld,”BGList™);
SaveFlag = 1;

/* Begin generated code for Connection */
BGShips_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */
) else {
LackData_Connect_Panel(NULL WPT_PREFERRED);
}

}

struct DISPATCH NewBGDispatch{] = {

{*“Close”, Close_Event},

{*Help”. Help_Event},

{*“Save”, Save_Event},

{NULL, NULL} /* terminator entry */
b

174

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *#* */

J* *** Eile: pan_NewBG.h *** */

f* *** Generated: Jan 19 13:12:17 1993 *** */
/*******t**#**
* PURPOSE:

* Header file for panel: NewBG

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

* NewBG

*

* CHANGE LOG:

* 19-Jan-93 Initially generated... TAE

* **

*/

#ifndef I_PAN_NewBG /* prevent double include */
#define | PAN_NewBG 0

/* Vm objects and panel Id. */
extern Id NewBGTarget, NewBGView, NewBGld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH NewBGDispatch(];

/* Initialize NewBGTarget and NewBG View */
extern VOID NewBG_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID NewBG_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID NewBG_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID NewBG_Connect_Panel ();
#endif

175

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
f* *** File: pan_SaveNewB.c *** */

/* *** Generated: Feb 8 10:13:45 1993 *** */
/********t*******#***t***#******
* PURPOSE:

* This file encapsulates the TAE Plus panel: SaveNewB

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* “#include “pan_SaveNewB.h™". For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id, Target, and View are provided.

*

* For the panel items:
* Message
*

* CHANGE LOG:
* 8-Feb-93 Initially generated... TAE

2k ok 2k s ake 2 2k ke e 3 e e 2k e 3 20 e 2k ke 2 e e e 3k 3 2k e e 2k 2 e e e e e e 3¢ e e e 3fe e e 2 e e e 66 6 20 3k ¢ e 2 e 8¢ e e 3 e 2 e 3 o e 3 Xk ke e 3k e e Ak K
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include *“global.h” [* Application globals */
#include “pan_SaveNewB.h"

[*BERN*/

#include “pan_SetUpBGs.h™
#include “pan_BGShips.h”
#include “pan_NewBG.h"
#include “pan_LackData.h”

extern int SaveNewBG();

Id SaveNewBTarget, SaveNewB View, SaveNewBId;
/* SaveNewBDispatch is defined at the end of this file */

/*t*************************************t***************t**t*#************
* Initialize the view and target of this panel.
*/

FUNCTION VOID SaveNewB_Initialize_Panel (vmCollection)
Id vimCollection;

{
Id Co_Find ();

SaveNewBView = Co_Find (vmCollection, *'SaveNewB_v™);
SaveNewBTarget = Co_Find (vmCollection, “*SaveNewB_1");
}

/*************#*********#***t***
* Create the panel object and display it on the screen.
*

FUNCTION VOID SaveNewB_Create_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (SaveNewBId)
printf (“‘Panel (SaveNewB) is already displayed.\n");
else
SaveNewBId = Wpt_NewPanel (Default_Display.
SaveNewBTarget.SaveNewBView, relativeWindow,
SaveNewBDispatch, flags);
}

176

/* 2k 3 e e 3 2k o e 2 e 2 2 2k ke e 2 ke e e 30k 3k e ke s e ek i ek skl s 3k ke kok ok sk Sk ok ko ko 2k ok sk e ok ok ke ok R Ok 30k ak ke 3k kok Xk 3k

* Erases a panel from the screen and de-allocate the associated panel
* object.

*/

FUNCTION VOID SaveNewB_Destroy_Panel ()

{
Wpt_PanelErase(SaveNewBld);
SaveNewBId=0;

}

[ARk KRRk R ORI ARk R Rk KRR R R R kR K

* Connect to this panel. Create it or change it’s state.
£l

FUNCTION VOID SaveNewB_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (SaveNewBId)
Wpt_SetPanelState (SaveNewBId, flags);
else
SaveNewB_Create_Panel (relativeWindow, flags);

!

J Aok sk ok ook ok ok ok Kok sk ok R Kk ARk ok kR Rk K oK

* Handle event from parameter: Message
*/
EVENT_HANDLER Message_Event (value, count)

TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */
{

BERN/

int BGIndex;

BGInfo BGs[MAXBGS];

/* Begin generated code for Connection */
if (count <= 0)
: /* null value or no value */
else if (s_equal (value[0], “OK™))
if (SaveNewBG(NewBGTarget) == 1){
BGlIndex = GetBGs(BGs);
ShowBGs(SetUpBGsld,"BGList™);
BGShips_Connect_Panel (NULL, WPT_PREFERRED);
SaveNewB_Destroy_Panel ();
} else {

SaveNewB_Destroy_Panel ();

LackData_Connect_Panel(NULL .WPT_PREFERRED);

177

T

els;: if (s_equal (value{0], “‘Cancel™))
NewBG_Destroy_Panel();

SaveNewB_Destroy_Panel ();
)

/* End generated code for Connection */
}

struct DISPATCH SaveNewBDispatch([] = {

{*“Message”, Message_Event}.

{NULL, NULL} J* terminator entry */
K

178

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: pan_SaveNewB.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */
/***#*****************#*****t*
* PURPOSE:

: Header file for panel: SaveNewB

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* The panel’s name is changed (not title)

* For panel:

* SaveNewB

*

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

k3 2k e 2k ok e 2 3 e 3k ok 2k 2k 3 3 e ok ok e ke 3K e e ik ok K k3 e k e sk ok ook ok ok ko kol ko sk 2ok ok ki ok ok 2K 3k sk K oo i ok ol ok ok ok ok ke

*

#ifndef I_PAN_SaveNewB /* prevent double include */
#define _PAN_SaveNewB 0

/* Vm objects and panel Id. */
extern Id SaveNewBTarget, SaveNewB View, SaveNewBId:

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH SaveNewBDispatchi]:

/* Initialize SaveNewBTarget and SaveNewBView */
extern VOID SaveNewB_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID SaveNewB_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID SaveNewB_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID SaveNewB_Connect_Panel ();
#endif

179

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
[* *** File: pan_SelBG.c *** */

/* *** Generated: Feb 8 10:13:45 1993 **x* */

/* a6 3 2 2k ok 2 3k 3k 3 3 S e 3 e 2 o 2 e 3 o e 2k ake sl e 3k e 2 20 2k 2 ake e o e e 3 0 36 3 e ol s ke 2 e A e 2 e el e e e e ke b b e e e e e e e s e ok ok
* PURPOSE:

* This file encapsulates the TAE Plus panel: SelBG

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* *#include “pan_SelBG.h™’". For more advanced manipulation of the panel

* using the TAE routines. the panel’s Id, Target, and View are provided.

*

* For the panel items:

* Message
*

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE

sk b ok 3k oje o s 3ok 3k Sk ke 3 sl e ol ae 3k 3 390 e s ok ke o ok 3k 3k 3l 3 ok ok 3 sk o 3 e e s ok ok 3k ke s ok Sk e ok sl e e ok e el s e sk s ol e s i 3 sk s ok ke ek
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_SelBG.h"

/* One “include” for each connected panel */

Id SelBGTarget, SelBGView, SelBGId;
/* SelBGDispatch is defined at the end of this file */

/* sk 3 2 3k s ok ok 2 ke 3k s 3k 3 e S o 3 ok 3 o 3k ke ok e e sk 3 ok 3K 3 ke sk sl 3 3 o K 3ok sk e s s ke o ek s ke sl e o S ke e s ok ol ek ek s e ok ok ko

* Initialize the view and target of this panel.
*

FUNCTION VOID SeiBG_Initialize_ Panet (vimCollection)
Id vmCollection;

{
Id Co_Find ();

SelBGView = Co_Find (vmCollection, “SelBG_v™);
SelBGTarget = Co_Find (vmCollection, “*SelBG_t™).
)

/* ke 3 e ke 3k 33 ofe e e 3k e e 3¢ 3¢ ke e e e e 3 3k e 3 e 2 3 3 3k 3 e 2k e s 3 2k Sk 3 Ak e 3 e e 3k s e 2 e A e s ek e 3k e ek ok ko 3k ok K e e ok o ok ok ok k
* Create the panel object and display it on the screen.
*/

FUNCTION VOID SelBG_Create_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (SelBGId)
printf (*“Panel (SelBG) is already displayed.\n™);
else
SelBGId = Wpt_NewPanel (Default_Display, SelBGTarget, SelBGView,
relativeWindow, SelBGDispatch, flags);

/* e 3¢ 3 e 2 e e ok 3k 3 e e e e e e e 2 e 2 e e e e e e e 3 e e e e e e e e e e e e e e e e ke e e e e e ok s sl e ek e ode gk e ek ok ook

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/

180

FUNCTION VOID SelBG_Destroy_Panel ()

{
Wpt_PanelErase(SeiBGId):
SelBGld=0;

!

/***

* Connect to this panel. Create it or change it’s state.
*

FUNCTICN VOID SelBG_Connect_Panel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;

{
if (SelBGId)
Wpt_SetPanelState (SelBGId, flags);
else
SelBG_Create_Panel (relative Window, flags);
}

/***t*

* Handle event from parameter: Message
¥

EVENT_HANDLER Message_Event (value, count)
TEXT *value(]; /* string pointers */
FUNINT count; /* num of values */
{

/* Begin generated code for Connection */
if (count <= ()
: /* nuli value or no value */
else if (s_equal (value{0], “OK™))
SelBG_Destroy_Panel ();
}
else if (s_equal (value{0], “Cancel™))

SelBG_Destroy_Panel ();
]

/* End generated code for Connection */

}

struct DISPATCH SeIBGDispatch[] = {

{*Message”. Message_Event},

{NULL. NULL} /* terminator entry */
b

181

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 ED1 1092 *** ¥/

[* *** File: pan_ScIBG.h *** */

/* *** Generated: Jan 19 13:12:17 1993 *** */

/* 390 3 3 e 3 ok a3 o ok ak 3 3k 2 3 3 2k 3k 3k abe o ok ok 3 3 ok e 3 3k a2k e 3 e 3k ok e 3k 2k o 3 3k o e sk sk ok sk ok ok o 3 3 ke 3 i e 3 e 3k ok o 3 o ke o o ok ok
* PURPOSE:

* Header file for pancl: SelBG

*

* REGENERATED:

* The following WorkBench operations will cause regeneration vui «.is file:
* The panel’s name is changed (not title)

* For panel:

* SelBG

*

* CHANGE LOG:

* 19-Jan-93 Initially generated... TAE

ke afe e ok o e e e 2 2k 4 ok 3 e sk o ok 3k sk i o 3 ok s i ok 2k s ok ok ke e e 3 A 3 sk 3 sk i e sk 3 koK ok k3 e ol ak sk ok ok 3 2k e e e ke e ok ke e ek e ek koK

*/

#ifndei I_PAN_SelBG /* prevent double include */
#define |_PAN_SelBG 0

/* Vm objects and panel Id. */
extern Id SelBGTarget, SelBG View, SelBGId:

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH SelBGDispatch(];

/* Initialize SelBGTarget and SelBGView */
extern VOID SelBG_Initialize_Panel ():

/* Create this panel and display it on the screen */
extern VOID SelBG_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID SelBG_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID SelBG_Connect_Panel ();
#endif

162

P‘_—L

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: pan_SetUpBGs.c *** ¥/
/* *** Generated: Jan 19 11:14:17 1993 *** */

% ***********t**********t*#******#*******#****t***************************
* PURPOSE:

* This file encapsulates the TAE Plus panel: SetUpBGs

. * These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* “#include “pan_SetUpBGs.h™". For more advanced manipulation of the panel

* using the TAE routines, the panel's Id, Target, and View are provided.

%* ***********t***t****tt*************lk***********************#**********#***

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” * Application globals */
#include “pan_SetUpBGs.h"

/* One “include™ for each connected panel */
#include “pan_CloseAll.h™

#include “pan_DelBG.h"

#include “pan_BGData.h”

#include “pan_NewBG.h"

/*BERN*/
#include “pan_SelBG.h"
#include “pan_CloseAlLh”

extemn int GetBGs();
extern void ShowBGs();

Id SetUpBGsTarget, SetUpBGsView, SetUpBGsld;
/* SetUpBGsDispatch is defined at the end of this file */

/* *****************t*t********t***#***************************************

* Initialize the view and target of this panel.
*

FUNCTION VOID SetUpBGs_Initialize_Panel (vmCollection)
Id vmCollection;

{
Id Co_Find ();

SetUpBGsView = Co_Find (vmCollection, “SetUpBGs_v");
SetUpBGsTarget = Co_Find (vmCollection, “SetUpBGs_t");

e o s i o ok oo s o s Kk okl K okl ek o ok o ok e st e ok ok ok skl soR R Aolok e olok ok ook sk daiok kool sk dok ok kokokok
* Create the panel object and display it on the screen.
*

/
FUNCTION VOID SetUpBGs_Create_Panel (relativeWindow, flags)
Window relativeWindow:;
COUNT flags;
{

» *BERN*/
BGInfo BGs[MAXBGS];

if (SetUpBGsld)
, printf (“Panel (SetUpBGs) is already displayed-\n"):
R else
SetUpBGsld = Wpt_NewPanel(Default_Display.
SetUpBGsTarget.SetUpBGsView. relativeWindow,

183

e ——————————————

SetUpBGsDispatch, flags);
GetBGs(BGs):

ShowBGs(SetUpBGsid,”"BGList™);
}

/****#**********#*******************************t*************#***********

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID SetUpBGs_Destroy_Panel ()

{
Wpt_PanelErase(SetUpBGsld);
SetUpBGsid=0;

}

/**********#**

* Connect to this panel. Create it or change it’s state.

*

FUNCTION VOID SetUpBGs_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags:

{
if (SetUpBGsld)
Wpt_SetPanelState (SetUpBGsld, flags);
else
SetUpBGs_Create_Panel (relativeWindow, flags);

/***************##**#*****************x#**********************t**********#

* Handle event from parameter: Close
*

/
EVENT_HANDLER Close_Event (value, count)

TEXT *value(]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
CloseAll_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

/****t#****tt#**t*****#****t******t**t***#********************t**#t*******
* Handle event from parameter: Delete

*/
EVENT_HANDLER Delete_Event (value, count)
TEXT *value(]; /* string pointers */
FUNINT count; /* num of values */
{

/*BERN*/

if (StringParm(SetUpBGsTarget,”"BGList™) != NULL){
/* Begin generated code for Connection */
DelBG_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

} else {

SelBG_Conncct_Panel(NULL, WPT_PREFERRED):
}
}

184

/* e e e ke e 3 e 2 o e e e 3 e e e e 2k 2 o e 3 e e 2 2k 3k ok e 3 e e e e e e e e e e 3 ok a3 el 3k e o e Sk sk e e e e 3l e ek ek e ok ok ek ok ok
* Handle event from parameter; Edit

*/
EVENT_HANDLER Edit_Event (value, count)
TEXT *value(}; /* string pointers */
FUNINT count; /* num of values */
{

/*BERN*/

if (StringParm(SetUpBGsTarget,”"BGList™) '= NULL){

/* Begin generated code for Connection */
BGData_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

} else {

SelBG_Connect_Panel(NULL, WPT_PREFERRED);
}
)

/* 3¢ 2 2 e 3 2 3 o 33k ok sk 3 2k 2k 3 3 sk 3 ok 2 3 ok i 2k 3k e ke sk 3K o ke ok 3 e 3k ok ke o3 2k 3 ok sk 3 e sfe ae e e e e a3 e 3k ol 3K e Bk 3k ok K ke sk ol ok
* Handle event from parameter: Help

*/

EVENT_HANDLER Help_Event (value, count)
TEXT *valuef]; [* string pointers */
FUNINT count; /* num of values */

{
}

/* e ke 2 ok o e 2 e e ke e 2k e ke ok e o ok e e e s e 3l sk s s e s sl e o3 s 3 ke o ok o S e o e e e ke s sk 3 ok sk o ok o ke sk i ok e e e 3k s 3k ok ok ok
* Handle event from parameter: New

*/

EVENT_HANDLER New_Event (value, count)
TEXT *valuel]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
NewBG_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

struct DISPATCH SetUpBGsDispatch[] = {
{*Close”. Close_Event},
{*Delete”. Delete_Event},
{“Edit”, Edit_Event},
{*Help”, Help_Event},
{*“New"”, New_Event},
{NULL.NULL)} /* terminator entry */

18RS

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: pan_SetUpBGs.h *** */

J* *** Generated: Jan 19 13:12:17 1993 *** */
/*ttt**t****#*******#**##*****#********************t******************t***
* PURPOSE:

* Header file for panel: SetUpBGs

2%k

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* SetUpBGs

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
ok 3 2 3 3 ol o 3 286 2 3 3 2 o ok e 3k e 3 b s ok e o ke 2k e 2k Sk 3k 3k ke e 2k e 2 2k e o e e e e ke e 3k e ok o ke ok e e i 25 ke R ke ok ok ke 3 ok e e s i ke ook e ok ok kK

*/

#ifndef I_PAN_SetUpBGs /* prevent double include */
#define I_PAN_SetUpBGs 0

/* Vm objects and panel Id. */
extern Id SetUpBGsTarget. SetUpBGsView, SetUpBGsld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH SetUpBGsDispatch(};

/* Initialize SetUpBGsTarget and SetUpBGsView */
extern VOID SetUpBGs_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID SetUpBGs_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID SetUpBGs_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID SetUpBGs_Connect_Panel ();
#endif

186

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: pan_Ship.c *** */
[* *** Generated: Feb 8 10:40:35 1993 *** */
/************t************#***
* PURPOSE:

* This file encapsulates the TAE Plus panel: Ship

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘thnclude “pan_Ship.h™’. For more advanced manipulation of the pane!

* using the TAE routines, the panel’s Id, Target. and View are provided.

*

* For the panel items:

* Aircraft, Close, F44, F76,
* Help, Ordnance, Print, Save,
*

* CHANGE LOG:

* 8-Feb-93 Initially generated... TAE

s e ofesde e e e e s el e e e Ak e e sk s o e e s s e el ek s e e ke e sl ek ek e i ok ok ok sk ok ok ok ol ok ok ke sk ok ok sk

*/

#include “tagconf.inp”
#include “wptinc.inp”
#include “global.h™ /* Application globals */

#include “pan_Ship.h”

/* One “include™ for each connected panel */
#include “pan_AcftLoad.h”

#include “pan_F44Fuel.h”

#include “pan_F76Fuel.h”

#include “pan_OrdSel.h”

#include “pan_Prindob.h”

Id ShipTarget, ShipView, Shipld;
/* ShipDispatch is defined at the end of this file */

ek e s o s o sk oo s e o oo s ks ok e sk o o o ol s sl o s sl e oo e e sk sk ek s ke ok e e o sk sk ook ok sl ok ke sk s ok e ok ook ok sk ook ok ok

* Initialize the view and target of this panel.
*

/
FUNCTION VOID Ship_Initialize_Panel (vmCollection)
Id vmCollection;

{

Id Co_Find ();

ShipView = Co_Find (vinCollection, “Ship_v");

ShipTarget = Co_Find (vmCollection, “Ship_t");

}
/**********************t*********************************#********tt******

* Create the panel object and display it on the screen.
*

FUNCTION VOID Ship_Create_Panel (relativeWindow, flags)
Window relativeWindow;

COUNT flags:
{
if (Shipld)
printf (“Panel (Ship) is already displayed.\i™);
else

Shipld = Wpt_NewPanel (Default_Display, ShipTarget, ShipView,
rclativeWindow. ShipDispatch, flags);

187

/* e ale e 3 3¢ 2 e 2k e 2 e 3¢ e e 300 e e S e e e e 3 20 2 36 2e e 30 3 3k 30 3 e 2 e 3¢ 234 3 2 3 e 2420 2 o9 e e ke 3 e e e e 3k e e o e e e o 3k ok o e e koK

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID Ship_Destroy_Panel ()

{
Wpt_PanelErase(Shipld);
Shipld=0;

}

/* 2k 2 o e e 2 2 3 o e e e ok 2k e e 3 sk s e e e sk 2 e ok ek ok s 2 3k ke e e e 3 2k 3kl ek e 2k ok 3 ke s 3k ok 3k K k3 ok sk ol ok s e e 3k 3 3K ok 2k ok ok K

* Connect to this panel. Create it or change it’s state.
*

FUNCTION VOID Ship_Connect_Panel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;

|
if (Shipld)
Wpt_SetPanelState (Shipld, flags);
else
Ship_Create_Panel (relativeWindow, flags):
}

/* e 2 e o e 3 s ok e e 3 3§ 2 o8 o e e s e e e e Ak ke e s e e o a3k e s e R ok ok ok sk ok ke e d ok e 3 6 i i ke 3 3 ok ok ol ok o ok sk 2 s ok e ok o 3l s ok ok ok o
* Handle event from parameter: Aircraft

*/

EVENT_HANDLER Aircraft_Event (value, count)
TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
Acftl.oad_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

/* 2k 3 3 2 e e e ke s 3 2 o b 3 o e 3 ok ol 35 ahe e ke e e e Aok B 3k ko 3k sk ok ke sk e 3 3 ke i sk Sk 3k e o s ok 3 e ik e 3 3 ke ok s 3 ok s e e 3 o ook ok
* Handle event from parameter: Close

*/

EVENT_HANDLER Close_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
Ship_Destroy_Panel ();

/* End generated code for Connection */

}

/* ke 2k s 2 2k e e oo e st ok 2 ke sk 3 e 3 ol 3 ok 3 ok sl e ke 3k o e o ok o s ke 3 e 3k 2k 3 i ke ol e o e sk s o 3 s o ok B e ok o o e sk ka3 ok olok ok
* Handle event from parameter: F44

*/

EVENT_HANDLER F44_Event (value, count)
TEXT *value[]: /* stnng pointers */
FUNINT count; /* num of values */

{
/* Begin generated code for Connection */
F44Fuel_Connect_Panel (NULL. WPT_PREFERRED);

188

/* End generated code for Connection */

3k 38 e e 2 e e e sfe e e 2k ol s e s o s 3 3 ok e ke e sk e e e s e 3k ke sk e e ok ok ke e s 3 e ok ke 3 3k s ok 3 sk sk 3 3k ok s sk 3 3 e ok 3k sk s Ak sk ok ok ok

* Handie event from parameter: F76

*/

EVENT_HANDLER F76_Event (value, count)
TEXT *valuel]; [* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
F76Fuel_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

o afe o abe 3 2 3 o o e 3 3 2 3 3k s e o ke 3k afe 3 ok 3k e o 3 ol e e e e 3 o ol ok 3 3 ke ok ke ok 3 sk 3k el ok ok ke ke ok i o e s e ol 3K sk 3 2k ke ok sk e ok e ok o ke e 3k

* Handle event from parameter: Help
%*

/
EVENT_HANDLER Help_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{
}

3k ok sk ok 2 28 e ok o 2 e o e 3 ok sl 3K e o o 2k 3 ok e 3k ok 3 e e ofe sk ok e 3 i 3k ak ok e 8 3k o 3 3k e o 3k 3 2K ke e A 36 o ek o e ke s 3k ok o ok ok ok

* Handle event from parameter: Ordnance

*/

EVENT_HANDLER Ordnance_Event (value, count)
TEXT *valuef]; [* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
OrdSel_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

/***********#***

* Handle event from parameter: Print
*

/

EVENT_HANDLER Print_Event (value, count)
TEXT *value(]; /* string pointers */
I{:UNINT count; /* num of values */

/* Begin generated code for Connection */
Printdob_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

o e e e B ok e e s e o e sk e s ek e o A ok o e sl e s 3 e Sk o e sk o ik e sl 3 sk ok e sl S ke ok 3k 3k S ek 3 ok ok o 3ol 3k ok ol ek ok 3 o ok ok ok ok

* Handle event from parameter: Save
*

EVENT_HANDLER Save_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{
}

189

struct DISPATCH ShipDispatch(] = {
{*“Aircraft”, Aircraft_Event},
{*“Close”, Close_Event},
{“F44” F44_Event},
{“F76”,F76_Event},
{“Help”, Help_Event],
{*Ordnance”, Ordnance_Event},
{*Print”, Print_Event},
{*Save”, Save_Event},
{NULL, NULL} /* terminator entry */

190

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** ¥/

[* *** File: pan_Ship.h *** */

[* *** Generated: Jan 19 13:12:17 1993 *** */
/***
* PURPOSE:

* Header file for panel: Ship

E 3

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* Ship

*

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

sk oh 3o e e ok 2 2 e ok e 2k e 3 ok 3k 2k 3k 3 sk 3k e 2 Sk e e e 3 ke 3 e e e o e e o e ak e Ak ok ke 2k S o e e e e sk 3 ok B A 8 o e 3 ek e ok ek o ok ok 3k 3k

*/

#ifndef I_PAN_Ship /* prevent double inciude */
#define I_PAN_Ship 0

/* Vm objects and panel Id. */
extern Id ShipTarget, ShipView, Shipld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH ShipDispatch(];

/* Initialize ShipTarget and ShipView */
extern VOID Ship_Iritialize_Panel (};

/* Create this panel and display it on the screen */
extern VOID Ship_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID Ship_Destroy_Panel ():

/* Connect to this panel. Create it or change it’s state */

extern VOID Ship_Connect_Panel ():
#endif

191

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: BGEvents.c *** */

/* *** Generated: Jan 19 09:08:04 1993 *** */
/*#********#****#***#**‘***********tt*#*ﬁ**#******#*#**#*##****t***#***##*
* PURPOSE:

* This the main program of an application generated by the TAE Plus Code

* Generator.

*

* REGENERATED:
* This file is generated only once.
*

* NOTES:
* To turn this into a real application, do the following:
*

* 1. Each panel that has event generating paramelters is encapsulated by
* a separate file, named by concatenating the string “pan_" with the

* panel name (followed by a*.c™). Each parameter that you have defined
* 10 be “‘event-generating”, has an event handler procedure in the

* appropriate panel file. Each handler has a name that is a

* concatentation of the parameter name and the string *_Event”™. Add

* application-dependent logic to each event handler. (As generated by

* the WorkBench, each event handler simply logs the occurrence of the

* event.)

*

* 2. To build the program, type “make”. If the symbols TAEINC, ...,

* are not defined. the TAE shell (source) scripts $TAE/bin/csh/taesetup

* will define them.

*

* ADDITIONAL NOTES:

* 1. Each event handler has two arguments: (a) the value vector

* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass *ne value as if it were a vector with
*count 1.

*

* Though it’s unlikely that you are interested in the value of a button

* event parameter, the values are always passed to the event handler for
* consistency.

*

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in

* lnatialize_ All_Panels. There are macros defined in global.h to assist

* in accessing values in Vm objects.

*

* To access panel Id, target, and view, of other panels, add an

* “#include” statement for each appropriate panel header file.

£ 3

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

sk 3 ok afe she e s e e e e s ke 3 e ok sfc sfe le ok 3 afc 3 K Sk e 38 o 3 3 o8 ok ook sk e s e e ok ke o ok ek 2 2 i S sk ok gk 3 ok ok ok ok 3K ol ok ok ok o 3 ok ok ko ek ok
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “symtab.inc”

#include “global.h” /* Application globals */

Display *Default_Display;
BOOL Application_Done = FALSE;

main (argc, argv)

192

FUNINT argc;

TEXT *arqv|’,

{

WptEvent wptEvent; /* event data */

CODE eventType:

COUNT termLines, termCois;
CODE termType /*BERN*/ret:

/* PROGRAMMER NOTE:

* add similar extern’s for each resource file in this application
x

extern VOID BGEvents_Initialize_All_Panels ();

extern VOID BGEvents_Create_Initial_Panels ();

struct DISPATCH *dp: /* working dispatch pointer */
IMPORT struct VARIABLE *Vm_Find();
struct VARIABLE *parmv: /* pointer to event VARIABLE */

[* initialize terminal without clearing screen */
t_pinit (&termLines, &termCols, &termType):

/* permit upper/lowercase file names */
f_torce_lower (FALSE);

Default_Display = Wpt_Init (NULL);

/* initialize resource file */
/* PROGRAMMER NOTE:
* For each resource file in this application, calls to the appropriate
* Initialize_All_Panels and Create_Initial_Panels must be added.
>
/
BGEvents_Initialize _All_Panels (“‘/h/bglcss/scripts/gui/events/BGEvents.res™):
BGEvents_Create_Initial_Panels ();

/*BERN*/
ret = Wpt_SetHelpStyle (“wpthelp.res”™):
if (ret '= SUCCESS)

printf(*Couldn’t set help style\n™);

/* main event ioop */
/* PROGRAMMER NOTE:
* use SET_APPLICATION_DONE in “quit” event handler to exit loop.
* (SET_APPLICATION_DONE is defined in global.h)
*/
while ('Application_Done)
{
eventType = Wpt_NextEvent (&wptEvent): /* get next WPT event */
switch (eventType)
{
case WPT_PARM_EVENT:
/* Event has occurred from a Panel Parm. Lookup the event
* in the dispatch table and call the associated event
* handler function.
*

dp = (struct DISPATCH *) wptEvent.p_userContext;
for (; (*dp).parmName '= NULL; dp++)

193

o ———mmmm

if (s_equal ((*dp).parmName, wptEvent.parmName))
{

parmv = Vm_Find (wptEvent.p_dataVm, wptEvent.parmName);
(*(*dp).eventFunction)
((*parmv).v_cvp, (*parmv).v_count);
break;
}
break:

case WPT_FILE_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle file events.
* Use Wpt_AddEvent and Wpt_RemoveEvent to register and remove
* event sources.
-
printf (*“No EVENT_HANDLER for event from external source\n™);
break:

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:

* Add code here to handle window events.

* WPT_WINDOW_EVENT can be caused by windows which you directly
* create with X (not TAE panels), or by user acknowledgement

* of a Wpt_PanelMessage (therefore no default print statement

* is generated here).

*/

break:

case WPT_TIMEOUT_EVENT:
/* PROGRAMMER NOTE:
* Add code here to handle timeout events.
* Use Wpt_SetTimeOut to register timeout events.
E]

/
printf (“No EVENT_HANDLER for timeout event.\n™);

break;
default:
printf(“Unknown WPT Event\n™):
break;
} } /* end main event loop */

Wpt_Finish();/* close down all display connections */

/* PROGRAMMER NOTE:

* Application has ended normally. Add application specific code to
* close down your application

*/

} /* end main */

194

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** ¥/

[* *** File: BGEvents_creat_init.c *** */

[* *** Gencrated: Jan 19 09:08:04 1993 *** */
/**#*********#‘**********##**i***#
* PURPOSE:

* Displays all panels in the initial panel set of this resource file

x

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is added to the initial panel set

* A panel is deleted from the initial panel set

* For the set of initial panels:

* BGEvents

%

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

3k 3 2 e e 3 e e e e 2 e e e e e e 2 2 e ek sk ok ke 3k e ke 3 3k ke e ek ok 3k 3k e o 3k dk sk ik ek a3k ke 2 e k3 de e s e ke e 3k e sk o e ok 3 ok ok ok ok ik
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */

/* One include for each panel in initial panel set */
#include *pan_BGEvents.h”
FUNCTION VOID BGEvents_Create_Initial_Panels ()
{
/* Show panels */
BGEvents_Create_Panel (NULL, WPT_PREFERRED);
}

195

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: BGEvents_init_pan.c *** */

/* *** Generated: Feb 5 14:09:32 1993 *** */

/* e afe 3 e 206 e e 3¢ 2 e 2 e 2 e e e e e 3 e e e e 3l ofe e ok e ke ke 3k ook g ok dk ok e s e sl ko 3k ok i e ke ok i ke skl ko3 ok 3ok koo sk ok s ko kol ok
* PURPOSE:

* Initialize all panels in the resource file.

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* A panel is deleted

* A new panel is added

* A panel’s name is changed (not title)

* For the panels:

AAWThret, Aircraft, AirData, ASW, ASWOrd, ASWThret, BGCrsSpd,
BGEvents, BGShips, BGSSCom, BGSumCom, CloscAll, CommentL, CommList,
Consol, ConsolDa, ConsolRe, DelAcft, DelComm, DelEvent, DelOrd,
DelShip, Dtg, EditComm, EventLis. F44Fuel, F76Fuel, FuelTran.
LatLong, OrdData, Ordnance, OrdTrans, OrdTrSel, PrintJob, Raid,
RaidShip, SelBG. SelOrd, SelShiOr, SelShip. SelSumm, SetStat,
ShCrsSpd, Ship, Shuttle, StatRes, Strike, StrikeSh, Unrep,

UnrepDat, UnrepRes, USumComm, USumOrd

* CHANGE LOG:
* 5-Feb-93 Initially generated...TAE

a2k e o 3 3 b 3k e 3k e 39 2k e s e afe e sk e e e S e e e e e 3 ok ok o e e 3 e ke 2k S e e e i ke ok 3 3k e e ke a3 ke sk e ke ok ke ok o ok ok 3k 3 e 3K ok 3k ke 3k ok ok ok

*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “global.h” /* Application globals */

* ¥ % ¥ F ¥ * ¥

*

/* One “include™ for each panel in resource file */
#include “pan_AAWThret.h"
#include “pan_Aircraft.h”
#include “pan_AirData h”
#include “pan_ASW.h"
#include “pan_ASWOrd.h”
#include “pan_ASWThret.h"
#include “pan_BGCrsSpd.h”
#include “pan_BGEvents.h”
#include “pan_BGShips.h"
#include “pan_BGSSCom.h”
#include “pan_BGSumCom.h”
#include “pan_CloseAll.h”

#include “pan_CommentL.h"
#include “pan_CommList.h”
#include *pan_Consol.h”
#include “pan_ConsolDa.h™
#include “pan_ConsolRe.h”

#include “pan_DelAcft.h”
#include “pan_DelComm.h™
#include “pan_DelEvent.h”
#include *pan_DelOrd.h"”
#include “pan_DelShip.h"”
#include “pan_Dtg.h"
#include “pan_EditComm.h"

#include “pan_EventLis.h™
#include “pan_F44Fuel.h”
#include “pan_F76Fuel.h”
#include “pan_FuelTran.h"

196

#include “pan_LatLong.h™
#include “pan_OrdData.h™
#include “pan_Ordnance.h”
#include “pan_OrdTrans.h™
#include “pan_OrdTrSel.h”
#include “pan_PnintJob.h™
#include “pan_Raid.h”
#include “pan_RaidShip.h”
#include “pan_SelBG.h™
#include “pan_SelOrd.h”
#include “pan_SelShiOr.h™
#include “pan_SelShip.h”
#include “pan_SelSumm.h”
#include “pan_SetStati.h”
#include “pan_ShCrsSpd.h"
#include “pan_Ship.h”
#include “pan_Shuttle.h”
#include “pan_StatRes.h”
#include “pan_Strike.h”
#include “pan_StrikeSh.h”
#include “pan_Unrep.h”
#include “pan_UnrepDat.h”
#include *pan_UnrepRes.h”
#include *pan_USumComm.h"
#include “pan_USumOrd.h”

FUNCTION VOID BGEvents_Initialize_All_Panels (resfileSpec)
TEXT

*resfileSpec;

{

extern Id Co_Find ();
extern Id Co_New ();
Id vimCollection ;

/* read resource file */
vmCollection = Co_New (P_ABORT),
Co_ReadFile (vmCollection, resfileSpec, P_ABORT);

/* initialize view and target Vm objects for each panel */
AAWThret_Initialize_Panel (vmCollection);
Aircraft_Initalize_Panel (vinCollection);
AirData_Initialize_Panel (vinCollection);
ASW_Initialize_Panel (vimCollection);
ASWOrd_Initialize_Panel (vmCollection);
ASWThret_Initialize_Panel (vmCollection);
BGCrsSpd_Initialize_Panel (vmCollection);
BGEvents_Initialize_Panel (vmCollection);
BGShips_Initialize_Panel (vmCollection);
BGSSCom_Initialize_Panel (vinCollection);
BGSumCom_Initialize_Panel (vmCollection);
CloseAll_Initialize_Panel (vmCollection);
CommentL _Initialize_Panel (vmCollection);
CommList_Initialize_Panel (vmCollection);
Consol_Initialize_Panel (vimCollection);
ConsolDa_Initialize_Panel (vimCollection):
ConsolRe_Initialize_Panel (vimCollection);
DelAcft_Initialize_Panel (vimCollection);
DelComm_Initialize_Panel (vmCollection);
DelEvent_Initialize_Panel (vinCollection);
DelOrd_Iniualize_Panel (vimCollection);
DelShip_Initialize_Panel (vmCollection);

197

ﬁ

Dtg_Initialize_Panel (vmCollection);
EditComm_Initialize_Panel (vmCollection);
EventLis_Initialize_Panel (vmCollection);
F44Fuel _Initialize_Panel (vmCollection);
F76Fuel_lInitialize_Panel (vmCollection);
FuelTran_Initialize_Panel (vmCollection):
LatLong_Initialize_Panel (vimCollection);
OrdData_Initialize_Panel (vmCollection);
Ordnance_Initalize_Panel (vmCollection);
OrdTrans_Initialize_Panel (vmCollection);
OrdTrSel_Initialize_Panel (vimCollection);
PrintJob_Initialize_Panel (vmCollection);
Raid_Initialize_Panel (vimCollection);
RaidShip_Initialize_Panel (vmCollection);
SelBG_Initialize_Panel (vinCollection);
SelOrd_Initalize_Panel (vimCollection);
SelShiOr_Initialize_Panel (vimCollection);
SelShip_Initialize_Panel (vimColiection);
SelSumm_Initialize_Panel (vmCollection);
SetStati_Initialize_Panel (vmCollection);
ShCrsSpd_Initialize_Panel (vimCollection);
Ship_Initialize_Panel (vimCollection);
Shutile_Initialize_Panel (vmCollection);
StatRes_Initialize_Panel (vinCollection);
Strike_Initialize_Panel (vmCollection);
StrikeSh_Initialize_Panel (vimCollection);
Unrep_Initialize_Panel (vmCollection);
UnrepDat_Initialize_Panel (vmCollection);
UnrepRes_Initialize_Panel (vmCollection);
USumComm_Inijtalize_Panel (vinCollection);
?SumOrd_lnilialize_Panel (vmCollection);

198

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** /

J* *** Ejle: Imakefile *** */

[* *** Generated: Jan 13 11:28:36 1993 *** %/
/**#************************
* PURPOSE:

* This is the Imakefile of a C application generated by the TAE Plus

: Code Generator.

* REGENERATED:
* This file is generated only once.
*

* NOTES:

* 1. To build your application, type “make”. The Makefile generated
* by the TAE code generator invokes imake using this Imakefile to

* generate an application specific Makefile.

*

* 2. If you change the name of your resource file or application, you
* will need to either edit this file, or just delete it and regenerate

* the code.

x

* 3. Edit this file to include your application specific source files.
o xe o afe e fe e ofe S 3 Sk 3 s e o 3 e e 2k 3 s 3 o e e e e 3 3k 3 e 28k 3k 3l e e e e 3 36 e sfc 2k o e e e A e 3 3 3 3 e e afe e e e 3k e 3 3k 3k 2 e ke ok o ok ok

*/
#define GeneratedApplication

/* PROGRAMMER NOTE:

* Add a line ‘#include “Imake. RESFILENAME™’ for each resource file in
* your application.

*/

#include “Imake.BGEvents”

/* PROGRAMMER NOTE:
* Insert application specific build parameters. These override
* definitions in the configuration files in STAE/config.
*/
CDEBUGFLAGS =
LDDEBUGFLAGS =
APP_CFLAGS =
APP_LLOAD_FLAGS =
APP_LINKLIBS = -L/h/Nauticus/libs -IVids
APP_DEPLIBS = $(DEPLIBS)

APP_CINCLUDES = -I$(TAEINC)\
-I/h/Nauticusfinclude/vids/Vids.h\
-I/h/bgless/scripts/gui/events/BGEventsLib.h\
-Ih/bglcss/scripts/guifevents/bg.h

PROGRAM = BGEvents

/* PROGRAMMER NOTE:

* Add $(SRCS_RESFILENAME) and $(OBJS_RESFILENAME) for each resource file
* in your application.

*/

GENSRCS = $(PROGRAM).c $(SRCS_BGEvents)
GENOBIJS = $(PROGRAM).0 $(OBJS_BGEvents)

/* PROGRAMMER NOTE:

* Add your application specific srcs and object files (that are not
* generated by the code generator) here.

*

APPSRCS = fh/bgicss/scripts/guifevents/bg.c\

199

T

/h/bglcss/scripts/gui/events/BGEventsLib.c
APPOBIS = /h/bglcss/scripts/gui/events/bg.o\
Mh/bglcss/scripts/gui/events/BGEventsLib.o
/* Macro (defined in TAEmake.tmp!) to generate Makefile targets.
*

/
CApplication($(PROGRAM))

200

L

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
[* *** File: pan_BGCrsSpd.c *** */
[* *** Generated: Jan 19 15:25:41 1993 *** */

/***

* PURPOSE:
* This file encapsulates the TAE Plus panel: BGCrsSpd
. * These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting
* ‘#include “pan_BGCrsSpd.h™". For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id. Target, and View are provided.

sk 3 e b 30 3 3 23 2 2 30 2k ae 2k 2 2 3 2K 2 e sk e 2k 3 3 3 2 e o 28 e 3 e ke e 3k 2 3 g e 3 o ok sk 3 ok 3k 3 ek sk e a8 o o e ok 3k ik e ook ook o e 3k ok ok

*/

' #include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */

#include “pan_BGCrsSpd.h”

/* One “include” for each connected panel */

#include “pan_Dtg.h”

[*BERN*/

#include “pan_SelBG.h”

#include “pan_BGEvents.h”

FBERN*/

extern BGEVENT* SaveBGEvents();

extern BGEVENT* GetBGEvents():

extern BGEVENT* MakeBGEvent();

extern BGEVENT™* InsertBGEvent();

extemn int GetBG();

extermn int GetBGs();

extern int dtg();

extern int validdtg();

extern BGHEADER* MakeBGHeader();

extern BGHEADER* GetBGHeaders();

extern BGHEADER* InsertBGHeader();

extern BGHEADER* SaveBGHeaders();

1d BGCrsSpdTarget, BGCrsSpdView, BGCrsSpdld;

/* BGCrsSpdDispaich is defined at the end of this file */

/**************#**

* Initialize the view and target of this panel.

*

FUNCTION VOID BGCrsSpd_Initialize_Panel (vmCollection)
Id vinCollection;
{
Id Co_Find (;
BGCrsSpdView = Co_Find (vimCollection, “BGCrsSpd_v™);
BGCrsSpdTarget = Co_Find (vinCollection, “BGCrsSpd_t”)
}

»

/*********************#**#****************#*********t*********#t#*i*******

* Create the panel object and display it on the screen.

*/

- FUNCTION VOID BGCrsSpd_Create_Panel (relativeWindow, flags)

Window relativeWindow:;
COUNT flags:

201

{

if (BGCrsSpdld)
printf (‘Panel (BGCrsSpd) is already displayed.\n™);

else
BGCrsSpdld = Wpt_NewPanel(Default_Display, BGCrsSpdTarget,
BGCrsSpdView, relativeWindow, BGCrsSpdDispatch, flags);

/* a0 2 o ok e e e ok ok ok ke ok Ak 3k ook i ok e 3 ok ke e ok s e ke ok ok ok i e s ok sk s s ok sk ke e e e ok e e ke de e i sl e ok ok e e ok e ok ol ok e ok ok

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

FUNCTION VOID BGCrsSpd_Destroy_Panel ()

{
Wpt_PanelErase(BGCrsSpdld).
BGCrsSpdld=0;

}

/* ke e ke e 2 2 23 3 3¢ 2 2 o e e sk S e ok ok 24 e e e S 3 e e ke e e e e 2 3k ke e ke 3 ke e s ¢ ke i ek e e e e e 3 e e e e s ke e e A e e ok K e 3k e ok ok sk ok

* Connect to this panel. Create it or change it’s state.
*

FUNCTION VOID BGCrsSpd_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (BGCrsSpdld)
| Wpt_SetPanelState (BGCrsSpdld, flags);
else
BGCrsSpd_Create_Panel (relativeWindow, flags);

/* e 3k 2 e 2 26 3 3¢ 3 e 2k e e 3 e 2 e 3k ok e ok e e 3 e 2 e e sk e e ek sk e e e 3 e sk e ok Sl 3k e sk ke ek 2k 3 e ok 3 3k ke e 3 3k e ook 3 3k 3k ok sk ok 3k ok

* Handle event from parameter: AddEvent

*/
EVENT_HANDLER AddEvent_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count, /* num of values */
{
/*BERN*/
BGlnfo BGs[MAXBGS];
int BGIndex = 0;
int BGHeaderIndex = 0,
BGHEADER* NewHeader;
BGHEADER* HeadHeader;
BGEVENT* NewEvent;
BGEVENT* HeadEvent;

HeadEvent = (BGEVENT*) malloc(sizeof (struct BGEvent)):
HeadEvent->DTG = 0;

HeadHeader = (BGHEADER*) malloc(sizeof (struct BGHeader));
HeadHeader->DTG = 0;

BGindex = GetBGs(BGs);

202

BGlIndex = GetBG(StringParm(BGEventsTarget,”"BGList”), BGIndex);
HeadEvent = GetBGEvents(BGIndex);
if (HeadEvent->DTG == 0){

HeadEvent = (BGEVENT*) malioc(sizeof (struct BGEvent));
}

NewEvent = MakeBGEvent(0, dtg(StringParm(BGCrsSpdTarget,”Dtg™)),
BGCourseSpeed,Orphan,All Low.100,
RealParm(BGCrsSpdTarget,"Course™),
RealParm(BGCrsSpdTarget, “Speed™));
NewHeader=MakeBGHeader(BGCourseSpeed,
StringParm(BGCrsSpdTarget,”Dtg”),
RealParm(BGCrsSpdTarget,”Course™),
RealParm(BGCrsSpdTarget, “Speed”)).

HeadHeader = GetBGHeaders(BGIndex);

HeadHeader = InsertBGHeader(HeadHeader, NewHeader);
SaveBGHeaders(BGlIndex, HeadHeader);

HeadEvent = InsetBGEvent(HeadEvent, NewEvent);
SaviBGEvents(BGlndex, HeadEvent);

free(HeadEvent);

free(NewEvent);

/* Begin generated code for Connection */

BGCrsSpd_Destroy_Panel ();
/* End generated code for Connection */

/* 20 35 3 3 e 2 3 3¢ 2 e e e e ke e sk e 2 e o s e e e ek 3 e ke e e e e e e e e 2 e s e Sk 3 e e e e e e ok ok e e e e ok o A e A 3 e ok ke o o ok ok ok ok

* Handle event from parameter: Close

*/

EVENT_HANDLER Close_Event (value, count)
TEXT *value(]; /* string pointers */
FUNINT count: /* num of values */

{

/* Begin generated code for Connection */
BGCrsSpd_Destroy_Panel ();

/* End generated code for Connection */

}

/* e e e e 20e 3¢ 2 e e e e e e e e e e e e e e 3o e 3¢ e e 2 s 2 3 e e e e e 3¢ 36 e 2 3 e e e e e e 30 e 36 30 e e 3k e e e e e e e e ol ek e e ek koK
* Handle event from parameter: Ditg

*/

EVENT_HANDLER Dtg Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

int Dtglnteger:;
int* pointer;

203

(int*) Diglnteger = pointer;
Diglnteger = dig(StringParm(BGCrsSpdTarget. “Dtg™));

if (validdtg((StringParm(BGCrsSpdTarget, “Dtg™)), pointer) == 0){
/* Begin generated code for Connection */
Dtg Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

ke 3¢ 3¢ 2 e 3¢ 3k sk 2 e 3 3 3 sk ke 3k 2 2 2 2 2 2 e 3 3 3 e e 3k ke e e ek s 3 3 3k e 3k s e e 2 e e 3 e e e e e 3 3 2 e e e e e ol e e e e e e el e ek

* Handle event from parameter: Help
*

/
EVENT_HANDLER Help_Event (value, count)
TEXT *value(]; f* string pointers */
FUNINT count; /* num of values */
{
}

struct DISPATCH BGCrsSpdDispatch{] = {
{**AddEvent”, AddEvent_Event},
{*Close”, Close_Event},
{*“Dtg”, Dtg_Event}.
{*Help”, Help_Event},
{NULL, NULL} /* terminator entry */
b

204

L

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

/* *** File: pan_BGCrsSpd.h *** */

[* *** Generated: Jan 19 09:08:04 1993 *** ¥/
/**********************************#*******************#************#*****
* PURPOSE:

: Header file for panel: BGCrsSpd

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* BGCrsSpd

*

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

k 3he ok ofe e 2k e e 2 e 3 ofe e 3¢ e o 2k ofc 3 Ak e e 3k 3k A 3 e ofe e 3 ek ke ke 3k 3k 3 3 3ok o 3k e 3k 3 ok e 3 ak 3k ok ak 2k A 2 3k 3 sk A e ok 2k ek ok ook e ak ke akok

*/

#ifndef I_PAN_BGCrsSpd /* prevent double include */
#define [_PAN_BGCrsSpd 0

/* Vm objects and panel Id. */
extern Id BGCrsSpdTarget. BGCrsSpdView, BGCrsSpdld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH BGCrsSpdDispatch(];

/* Initialize BGCrsSpdTarget and BGCrsSpdView */
extern VOID BGCrsSpd_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID BGCrsSpd_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID BGCrsSpd_Destroy_Panel ();

/* Connect to this panel. Create it or change it's state */

extern VOID BGCrsSpd_Connect_Panel ();
#endif

205

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
[* *** File: pan_BGEvents.c *** */
/* *** Generated: Feb 8 11:33:14 1993 *** */
/* 3k 3l e 2 2 e 2 e sk e e 24 e 2k 3 3 e e e 3 e e 2k 2 o 0 ok ok 2 ke ok 3k 3 ok ok 3k ok s i Ak 3 i ok s i e e e ok ok o ok o e ok ok ok ke 2 e ak ol ok ok dkok ok
* PURPOSE:

* This file encapsulates the TAE Plus panel: BGEvents

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘#include “pan_BGEvents.h”". For more advanced manipulation of the panel
* using the TAE routines, the panel’s Id, Target, and View are provided.

*

* For the panel items:

* AAWThreatLevel, ASWEvent, ASWThreatLevel, BGCourseSpeed.
* Close, CommentList, Consol, EventList.

* FuelTransfer, Help, OrdnanceTransfe, Predict,

* Raid, SetStation, ShipCourseSpeed, ShipList,

* Strike, Unrep

*

* CHANGE LOG:

* 8-Feb-93 Initially generated...TAE

e e e e 3 aje s 2 2 e e 3 3 24 e e e e e 3k 2k 3e e e 3k R ek Al i e ok e sl e e sk e ai i i ek skl s e ke sk e ek e e e 2 i ok ok 3 ok ok skl e ok % ok
*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */
#include “pan_BGEvents.h"”

/* One “include” for each connected panel */
#include “pan_AAWThret.h”

#include “pan_ASW.h"

#include “pan_ASWThret.h”

#include “pan_BGCrsSpd.h™

#include “pan_CloseAll.h”
#include “pan_CommentL.h
#include “pan_Consol.h”
#include “pan_EventLis.h”
#include *“pan_FuelTran.h”
#include “pan_OrdTrSel.h”
#include “pan_SelSumm.h”
#include “pan_Raid.h”
#include “pan_SetStati.h”
#include “pan_ShCrsSpd.h”
#include “pan_BGShips.h”
#include “pan_Strike.h”
#include “pan_Unrep.h”

*»

/*BERN*/
extern int GetBGs();
extern void ShowBGs();

Id BGEventsTarget, BGEventsView, BGEventsld;
/* BGEventsDispatch is defined at the end of this file */

/* 20 ofe 3k 2 3k ke o) e 3 e o e e ok 3 2 2k ok e 3 3k e e o e ok ek 8 ok ok 2k e e ke e ek s sk oI 3k 3 ok a3k sk ok 3 ok 3 3 ol a3k 3k 3k 3ok Kok 3k sk ok ok o ok
* Initialize the view and target of this panel.
L 3

/
FUNCTION VOID BGEvents_Initialize_Panel (vimCollection)
1d vimCollection;

{

206

Id Co_Find ():

BGEventsView = Co_Find (vmCollection, *BGEvents_v");
BGEventsTarget = Co_Find (vmCollection. “BGEvents_t");
}

/****#*t******#**#*********#***#**t#**t***t********#*t*******#i***t*******
* Create the panel object and display it on the screen.
*

/
FUNCTION VOID BGEvents_Create_Panel (relativeWindow, flags)
Window relativeWindow:

COUNT flags:

{
/*BERN*/
BGInfo BGs[MAXBGS]:

if (BGEventsid)
pnntf (“Panel (BGEvents) is already displayed.\n");
else
BGEventsld =Wpt_NewPanel (Default_Display, BGEventsTarget, BGEventsView,
relativeWindow, BGEventsDispatch. flags);
GetBGs(BGs);

ShowBGs(BGEventsld."BGList™);
}

/**t**********#********#t****t*******#********t*********tﬁt**t***##***#***

* Erases a panel from the screen and de-allocate the associated panel
* object.
E]

FUNCTION VOID BGEvents_Destroy_Panel ()

{
Wpt PanelErase(BGEventsld);
BGEventsld=0:

}

/*#**###****t***t*###***#**#***#*#*ﬁ#******#it#***tt*******#*#***t*******#

* Connect to this panel. Create it or change it’s state.

*/

FUNCTION VOID BGEvents_Connect_Panel (relativeWindow, flags)
Wiidow iclativeWindow:;
COUNT flags:

{
if (BGEventsld)
Wpt_SctPanelState (BGEventsld, flags);
else
BGEvents_Create_Panel (relativeWindow, flags);

}

/t*##ﬁ***ttttt*tttt#‘***#t###ttt****#*#*t*tt#t#tt*t*##*ﬁ##*tti#*‘**#**t##t

* Handle event from parameter: AAWThreatLevel

*

EVENT_HANDLER AAWThreatLevel_Event (value. count)
TEXT *value{]: /* stnng pointers */
FUNINT count: /* num of values */

/* Begin generated code for Connection */

207

AAWThret_Connect_Panel (NULL, WPT_PREFERRED};
/* End generated code for Connection */
}

/* e 3 e 3 30 2k ok 3 3 3 2 e 3 e sk ke e ke e e sk 3 e ke e 2k e 2k ke e 3k ke i k3 ok e a3 s 3k 3 3 sk ok 3 3k ok ok ok ok ek a3 3k ok i 3 ook ook ok ok ok o dokok ok

* Handle event from parameter: ASWEvent

*/

EVENT_HANDLER ASWEvent_Event (value, count)
TEXT *value[}; /* string pointers */
FUNINT count; /* num of values */

{
/* Begin generated code for Connection */
ASW_Connect_Panel (NULL, WPT_PREFERRED);

/* End generated code for Connection */
}

/* 24 ke e 2 3 3 s 2k e ok e 3 e e e ok ok sk ofe 3 e ok e e ok 3k e e ok 3 ok ok ke e sk ok ok kol k kkokokdk ok kA ko ok ok Rk k kR k kR Rk kR Rk

* Handle event from parameter: ASWThreatLevel
*

EVENT_HANDLER ASWThreatLevel_Event (value. count)
TEXT *valuel[]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */

ASWThret_Connect_Panel (NULL, WPT_PREFERRED);

/* End generated code for Connection */

}

/* 8¢ 3 e 3 3k o o e 3ok ke ke e ke 3k o e 2 o 0 Sfe afe e 3 e e 3 e ok ok a5 sk ok e ke e e 2 e 3k o ke ok o 3 ke ok ok e e ke i a2 ale ok e e ko K ek ko ek kR ok ok

* Handle event from parameter: BGCourseSpeed
*/

EVENT_HANDLER BGCourseSpeed_Event (value, count)
TEXT *value([l: /* string pointers */
FUNINT count: /* num of values */

{

/* Begin generated code for Connection */

BGCrsSpd_Connect_Panel (NULL. WPT_PREFERRLD):

/* End generated code for Connection */

}

/* 3k 3 o e 3 e e e e e 2ge e e aje ok ke e s e s fe e e e e e e sk e e e e ok dkeon . e sk ak o ok bkl e ok 3k K e sk sk o o ok ok sk o ok e sk ok e o ok ok Kok
* Handle event from parameter: Close
*/
EVENT_HANDLER Close_Event (value, count)

TEXT *value(]; [* string pointers */

FUNINT count; /* num of values */
{
/* Begin generated code for Connection */
CloseAli_Connect_Panel (NULL. WPT_PREFFRRED);
/* End generated code for Connection */
)

% e e o e e o s e ook o s e el ok ok 3l sl ke sl s ook abe ok e i ok g ok ok sk ok skoR ok 3ok oK Rk ROk ok ok R kR KRk kR kR Rk Rk Rk kR Kk

* Handle event from parameter: CommentList
*

EVENT_HANDLER CommentList_Event (value. count)

208

TEXT *value(]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
CommentL_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

/**************************t**********************************t***********

* Handle event from parameter: Consol

*/

EVENT_HANDLER Consol_Event (value, count)
TEXT *valuel[]; [* string nointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
Consoi_Connect_Panel (NULL, WPT_PREFERRED),
/* End generated code for Connection */

}

/*************************it**********************************#*******#***

* Handle event from parameter: EventList

*

EVENT_HANDLER EventList_Event (value, count)
TEXT *valuel[]; /* string pointers */
FUNINT count; /* nem of values */

{

/* Begin generated code for Connection */
EventLis_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

/#*#**t*tl**ttt*****#********t**********t*********************##*****t****
* Handle event from parameter: FuelTransfer

*/

EVENT_HANDLER FuelTransfer Event (value, count)
TEXT *valuel]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
FuelTran_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

]

/#i*ttttt**##t#t****#*#*****t*******#**********t*#*t***t**#***t#t#*tt*##t*

* Handle event from parameter: Help

*

EVENT_HANDLER Help_Event (value, count)
TEXT *valuel]; [* string pointers */
FUNINT count; /* num of values */
{
/* Begin generated code for Connection */
EventLis_Connect_Panel (NULL, WPT_PREFERRED):
/* End generated code for Connection */

209

/******************#****************t****************##ttt**************#*

* Handle event from parameter: OrdnanceTransfe
*/

EVENT_HANDLER OrdnanceTransfe_Event (value, count)
TEXT *valuel]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
OrdTrSel_Connect_Panel (NULL, WPT_PREFERRED);,
f}" End generated code for Connection */

/**#********

* Handle event from parameter: Predict
*/
EVENT_HANDLER Predict_Event (value, count)

TEXT *valuel[]; J* string pointers */
FUNINT count; /* num of values */
{

/* Begin generated code for Connection */
SelSumm_Connect_Panel (NULL, WPT_PREFERRED),
/* End generated code for Connection */

}

/***t*******#***************

* Handle event from parameter: Raid
*/

EVENT_HANDLER Raid_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
{
/* Begin generated code for Connection */
Raid_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */
}

/***t*

* Handle event from parameter: SetStation
*

EVENT_HANDLER SetStation_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connection */
SetStati_Connect_Panel (NULL, WPT_PREFERRED);
f}" End generated code for Connection */

/*******************#*******#*t#***********##****************##***#*******
* Handle event from parameter: ShipCourseSpeed

*/

EVENT_HANDLER ShipCourseSpeed_Event (value, count)
TEXT *value(); /* string pointers */
FUNINT count; /* num of values */

{
/* Begin generated code for Connection */
ShCrsSpd_Connect_Panel (NULL, WPT_PREFERRED);

210

/* End generated code for Connection */
}

/* 28 3 o 2 28 2 3 e 3 3 ko e ok 3 3k ke 3 2 ok 3k o8 3k e e 3 e e e 3 3 3 3k ok 3 ok 3 3k 3k o 3 ok sk sk ok e ok ak ok o ok sk 3 e 3 e sk e ok 2 e ek ke 3k ok ok ok %k

* Handle event from parameter: ShipList
*/

EVENT_HANDLER ShipList_Event (value, count)
TEXT *value(]; [* string pointers */
I{:UNINT count; /* num of values */
/* Begin generated code for Connection */
BGShips_Connect_Panel (NULL. WPT_PREFERRED);
/* End generated code for Connection */

}

/* e 5 2 e 3 3 2 2k e o e e e 3 3 2k 2 e 2k e e o e e 3k e sk 2k 2k ok e 3 ok S sk ke e R e e ok S ke 2k e s e o ke e e sk s e ok ke sk e e ok ok ke i e ko ok ok ok

* Handle event from parameter: Strike

*/

EVENT_HANDLER Strike_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

{

/* Begin generated code for Connecuon */
Strike_Connect_Panel (NULL, WPT_PREFERRED);,
/* End generated code for Connection */

}

/* e 3k e 3 ok 3k 3 e 3 3 e s ok ke e afe e e e o s ok 3k e 2k 36 2o 2k 3 2 3 o S ok e ke o o e e 3 3k 3 e 3 e ok e b e sk 2 o e ok el o 3k e 3 3 ke e e ok ok e ke e ok
* Handle event from parameter: Unrep
*/

EVENT_HANDLER Unrep_Event (value, count)
TEXT *value(]: /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
Unrep_Connect_Panel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

}

struct DISPATCH BGEventsDispatch{] = {
{“AAWThreatLevel”, AAWThreatLevel_Event},
{“ASWEvent”, ASWEvent_Event},
{“ASWThreatLevel”, ASWThreatLevel_Event}.
{“BGCourseSpeed”, BGCourseSpeed_Event},
{“Close”, Close_Event},

{*CommentList”, CommentList_Event},

{*Consol”, Consol_Event},

{“EventList”, EventList_Event},

{

{

{

{

{

{

{

|

‘.

.

“FuelTransfer”, FuelTransfer_Event).
“Help”, Help_Event},
“OrdnanceTransfe”, OrdnanceTransfe_Event).
“Predict”, Predict_Event},

“Raid”, Raid_Event},

“SetStation™, SetStation_Event},
*ShipCourseSpeed”, ShipCourseSpeed_Event},
“ShipList”, ShipList_Event},

211

{“Strike”, Strike_Event},

{*Unrep”, Unrep_Event},

{NULL.NULL} /* terminator entry */
b

212

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
J* *** File: pan_BGEvents.h *** */
/* *** Generated: Jan 19 09:08:04 1993 *** %/
e 2 e ¢ e e 2 she 2 3 e e e e 3 3 e 3 e 2k o5 ke e 3 2 2 e e e e ke o sk e ok ok sk sk ok e ak 3k kol ok 3k ke 2 3 e e ak 3 2 3k e 3ok e aikok ks ko ok ok ok ok ok
* PURPOSE:
* Header file for panel: BGEvents
sk

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* BGEvents

*®

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

e e 3 o o 2k e 3k s o e e e e s e s 3 o e o e 3 s 3k ok ek e 3 3 2k ok ok e ke 3k ok 2 ok e e s 3k e e ok e e 2ok e 2k 2k e el e ok e sk sk e ok e ok ke ok ok 3k ok o ok

*/

#ifndef I_PAN_BGEvents /* prevent double include */
#define _PAN_BGEvents O

/* Vm objects and panel Id. */
extern Id BGEventsTarget, BGEventsView, BGEventsld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH BGEventsDispatch(];

/* Initialize BGEventsTarget and BGEventsView */
extern VOID BGEvents_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID BGEvents_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID BGEvents_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */
extern VOID BGEvents_Connect_Panel ();
#endif

213

/¥ *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** File: Overview.c *** */

[* *** Generated: Jan 13 13:52:27 1993 *** */

sk e 3fc e 3 3 e 3k e ofe e 3 e 266 o 3k 3k 3 3k a8 ok e e 3k e e 3 e 2k e Ak 2k 3k ok ofc e o ik e ok ale ak ke i 3k 3k ak i 3k sk aie 3 sk 3k ko ke ke 3 S ke ke ok 3k ke ok ok
* PURPOSE:

* This the main program of an application generated by the TAE Plus Code

: Generator.

* REGENERATED:
* Thas file is generated only once.
*

* NOTES:
* To turn this into a real application, do the following:
*

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string “pan_" with the

* panel name (followed by a “.c”). Each parameter that you have defined
* to be “event-generating”, has an event handler procedure in the

* appropriate panel file. Each handler has a name that is a

* concatentation of the parameter name and the string “_Event™. Add

* application-dependent logic to each event handler. (As generated by
* the WorkBench, each event handler simply logs the occurrence of the
* event.)

x*

* 2. To build the program, type “make”. If the symbols TAEINC, ...,

* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

*

* ADDITIONAL NOTES:

* 1. Each event handler has two arguments: (a) the value vector

* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with

* count 1.

*

* Though it’s unlikely that you are interested in the value of a button

* event parameter, the values are always passed to the event handler for
* consistency.

*

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in

* Initialize_ All_Panels. There are macros defined in global.h to assist

* in accessing values in Vm objects.

*

* To access panel Id, target, and view, of other panels, add an
* “#include” statement for each appropriate panel header file.
»*

* CHANGE LOG:
* 13-Jan-93 Initially generated... TAE

3 e s e 3 3 o e 3 e o 3 o 3 ok e 3l e ok e 3 2k e e e e ke a8 2k ke e e ke e e ok ok e e e Sl sk e 3 o e ke e s 3 ok Sk e de e ke 2 e ok ok e ok e ok s ek ok ok ok

*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “global.h” /* Application globals */

Display *Default_Display;
BOOL Application_Done = FALSE;

main (argc, argv)

214

FUNINT argc;
TEXT *argv(];

{
WptEvent wptEvent; /* event data */
CODE eventType;

COUNT termLines, termCols;
CODE termType, ret;* BERN*/

/* PROGRAMMER NOTE:
* add similar extern’s for each resource file in this application
*

extern VOID Overview_Initialize_All_Panels ();
extern VOID Overview_Create_Initial_Panels ();

struct DISPATCH *dp; /* working dispatch pointer */
IMPORT struct VARIABLE ~ *Vm_Find();
struct VARIABLE *parmv; /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
t_pinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */
f_torce_lower (FALSE);

Default_Display = Wpt_Init (NULL);

/* initialize resource file */

* PROGRAMMER NOTE:

* For each resource file in this application, calls to the appropriate
* Initialize_All_Panels and Create_Initial_Panels must be added.
*

Overview_Initialize_ All_Panels (“Overview.res™);
Overview_Create_Initial_Panels ();

/* main event loop */

/* PROGRAMMER NOTE:

* use SET_APPLICATION_DONE in “quit” event handler to exit loop.
*/(SET__APPLICATION_DONE is defined in global.h)

*

ret = Wpt_SetHelpStyle(“wpthelp.res™);
while (!Application_Done)
{

eventType = Wpt_NextEvent (&wptEvent); /* get next WPT event */
switch (eventType)
{
case WPT_PARM_EVENT:
/* Event has occurred from a Panel Parm. Lookup the event
* in the dispatch table and call the associated event
* handler function.
*/
dp = (struct DISPATCH *) wptEvent.p_userContext;
for (; (*dp).parmName != NULL; dp++)
if (s_equal ((*dp).parmName, wptEvent.parmName))
{

parmv = Vm_Find (wptEvent.p_dataVm, wptEvent.parmName);

215

(*(*dp).eventFunction)
((*parmv).v_cvp, (*parmv).v_count);
break;

)
break;

case WPT_FILE_EVENT:

/* PROGRAMMER NOTE:

* Add code here to handle file events.

* Use Wpt_AddEvent and Wpt_RemoveEvent to register and remove
: event sources.

printf (“No EVENT_HANDLER for event from external source.\n”);
break;

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:
* Add code here to handle window events.
* WPT_WINDOW_EVENT can be caused by windows which you directly
* create with X (not TAE panels), or by user acknowledgement
* of a Wpt_PanelMessage (therefore no default print statement
* is generated here).
k4

break;
case WPT_TIMEOUT_EVENT:
/* PROGRAMMER NOTE:
* Add code here to handle timeout events.
* Use Wpt_SeiTimeOut to register timeout events.
*x

printf (“No EVENT_HANDLER for timeout event.\n™);

break;
default:
printf(“Unknown WPT Event\n™);
break;
} ! /* end main event loop */

Wpt_Finish();/* close down all display connections */

/* PROGRAMMER NOTE:

* Application has ended normallv. Add application specific code to
* close down your application

*/

) /* end main */

216

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

[* *** Eile: Overview_creat_init.c *** */

/* *** Generated: Jan 13 13:52:27 1993 *#x */
/******i*********************#******************t#******************#*****
* PURPOSE:

* Displays all panels in the initial panel set of this resource file

a*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* A panel is added to the initial panel set

* A panel is deleted from the initial pane] set

* For the set of inijtial panels:

* Overview

*

* CHANGE LOG:
* 13-Jan-93 Initially generated...TAE

e 3k 2k 2k e e 3 2 3 2 3 2 e e e ok 3 3 3k ok ke ok e 3 Sk e k3 o 3¢ 3 3 e ok s ke 3 b dle s sk ke e sk 3 3 e sl ak s 3 3K 3k 2 3 a2 afe 2 e a3 3k 3k e 3K ok ok e ok 2 e ok
*/

#include “taeconf.inp”

#include “wptinc.inp”)

#include “global.h” /* Application globals */

/* One include for each panel in initial panel set */
#include “pan_Overview .h”
FUNCTION VOID Overview_Create_Initial_Panels ()
{
/* Show panels */

Overview_Create_Panel (NULL, WPT_PREFERRED);
}

217

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: Overview_init_pan.c *** */
/* *** Generated: Jan 13 13:52:27 1993 *** ¥/
/* 0 3 3¢ e 2k 2 3 2 e 2k 2 3k 2 e e 2k e 2 e e 3 3 sk 28 25 3¢ ofe e b 2 e ok ok e 3 3 e 2k 2k s e e ke 3k a3 e 3 ak ok e 2k e 2k 3k e 3k ke 3k 3 38 2 e ok o 3k o ok e ke ok
* PURPOSE:

* Initialize all panels in the resource file.

*

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:

* A panel is deleted

* A new panel is added

* A panel’s name is changed (not title)

* For the panels:

* Overview

*

* CHANGE LOG:

* 13-Jan-93 Initially generated... TAE

sk e 3 3 Sk e 2 e 2k e e e e sfe 2k 2 e e 3 ke 2 e e s e 3 2k 3 e 28 ok e 3 3 e 3 e 3 e s ok ok 3 3 3 2k 2k 2k 5 ok e e i 28 25 e 3 ok 3 3 35 e ok ok e e e s e e ko

*/

#include “taeconf.inp”
#include “wptinc.inp”
#include “symtab.inc”
#include “global.h” /* Application globals */

/* One “include” for each panel in resource file */
#include “pan_Overview.h”

FUNCTION VOID Overview_Initialize_All_Panels (resfileSpec)
TEXT *resfileSpec;
{
extern Id Co_Find ();
extern Id Co_New ();
Id vimCollection ;

/* read resource file */
vmCollection = Co_New (P_ABORT);
Co_ReadFile (vinCollection, resfileSpec, P_ABORT);

/* initialize view and target Vm objects for each panel */
Overview_Initialize_Panel (vimCollection);

}

218

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: pan_Overview.c *** */

/* *** Generated: Jan 14 08:16:26 1993 *** */
/*******************#***t*************************&********i**************
* PURPOSE:

* This file encapsulates the TAE Plus panel: Overview

* These routines enable panel initialization, creation, and destruction.

* Access to these routines from other files is enabled by inserting

* ‘#tinclude “pan_Overview.h’. For more advanced manipulation of the panel

* using the TAE routines, the panel’s Id, Target, and View are provided.

%*

* NOTES:

* For each parameter that you have defined to be “event-generating™ in

* this panel, there is an event handler procedure below. Each handler

* has a name that is a concatenation of the parameter name and “*_Event”.
* Add application-dependent logic to each event handler. (As generated

* by the WorkBench, each event handler simply logs the occurrence of the
* event.)

*

* You may want to flag any changes you make to this file so that if you
* regenerate this file, you can more easily cut and paste your

: modifications back in. For example:

generated code ...

/* (+) ADDED yourinitials * /

your code

/* (-) ADDED */

more generated code ...

% % ¥ K ¥ X %

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* Overview

*

* The following WorkBench operations will also cause regeneration:
An item i1s deleted

A new item is added to this panel

An item’s name is changed (not title)

An item's data type is changed

An item’s generates events flag is changed

An item’s valids changed (if item is type string and connected)

* Anitem’s connection information is changed

* For the panel items:

* Ok ¥ X ¥ ¥

* BackUp. Close, Events, Forward,
* Help. Index, SetUp

*

* CHANGE LOG:

* 14-Jan-93 Initially generated...TAE

3¢ e ek 3 ok ke ok ke ok ok a3 3 e sk 3 3 i ok 3 3 ok 2k s o 3 ok 3k o 2k o 3K ok 3k ke ae 3 3K ok 3 ok s o e sk 2k o 3k ok o i 2 ok 3k 3k o e ok ok ek ke ke e ok kel e ok kok

*/

#include “taeconf.inp”

#include “wptinc.inp”

#include “global.h” /* Application globals */

#include “pan_Overview.h”
/* One “include” for each connected panel */

Id OverviewTarget, OverviewView, Overviewld;

219

/* OverviewDispatch is defined at the end of this file */
e 2 e 3 o afe 3¢ 3¢ e afe afe 5 3k 3 s 3k 3k 3k 2k 3 2 3 3k 3 2 e 3k 3 e 2K e 2k 33k 3 3k 3 3k 3 3 3k 3 e 2k o s e e ke e e sl ke 2 e e e 2 e e e e e e e e e e e e e

* Initialize the view and target of this panel.
*

FUNCTION VOID Overview_Initialize_Panel (vmCollection)
Id vimCollection;

{
Id Co_Find ();

OverviewView = Co_Find (vmCollection, “Overview_v");
OverviewTarget = Co_Find (vmColiection, *Overview_t");

}

k2l ke 3k e ke 2 e 3 3k o e 28 e ke s 23 2k 3 ke 3 o sk 3k 2k 2 ke e e e 2 2k e 3k a2 s sk ol e 3 ke e e 3k 2k sk ok e e 3k 3k ok 3 3 ke ok 2k o ek 3 sk ok ok 3k 3k ok ok K
* Create the panel object and display it on the screen.
*

/
FUNCTION VOID Overview_Create_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (Overviewld)
printf (“Panel (Overview) is already displayed.\n”);

else
Overviewld = Wpt_NewPanel (Default_Display, OverviewTarget, OverviewView,

relativeWindow, OverviewDispatch, flags);

k2 2 2 2 2k e e e e e ok e 3 ok R ke e e e 3k 2k ok ok bk sk 3 e ek ok o 3 3k 2k 3k 3k o e s e e e ke sk ek A 3 3 3 ek ke ek e 3 2 e e e ke el dk Ak e e ok ok

* Erases a panel from the screen and de-allocate the associated panel
* object.
*

/
FUNCTION VOID Overview_Destroy_Panel ()

{
Wpt_PanelErase(Overviewld);
Overviewld=0;

}

b 2 2 e e e 2 2 3 e o ok e he e e fe be ok s e e sfe 3 e e Ak e e 3 3k 3 3 e 3 2 e 3 e sl 3 3 e e o e e e ke 3 e Je e 3 3 e S ok ok sk sl e e e sl s sk o e o ok %

* Connect to this panel. Create it or change it’s state.
*

FUNCTION VOID Overview_Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

{
if (Overviewld)
Wpt_SetPanelState (Overviewld, flags);
else
Overview_Create_Panel (relativeWindow, flags);

}

ok 30 ok sk s 2 3 s e 2 o o ok ok 2 e e sk 2k 3 ok 2 sk o e e e e s 2 e e R e sk kol e e e 3 e ke 3k ke e e e ke S kel o e ik 2ok ak s i sk ok sk sk o ok ok sk ok

* Handle event from parameter: BackUp

*/

EVENT_HANDLER BackUp_Event (value, count)
TEXT *value[]; [* string pointers */
FUNINT count; /* num of values */

220

{
/* Begin default generated code */

printf (“Panel Overview, parm BackUp: value = %s\n™,
count>0 ? value[0] : “none™);

/* End default generated code */
}

/* 30e s 3 ok e 2 3 ke s o 2 ok o 2k e 3 2k e 2 e e 3 2 3K o 3 2B 3 2 e 2 e e e e a3 o e e o e ke s 3 ot 2k o xR e o e ol e afe 3 sk 3k 2k 2 ok e o e ofe ok ojok ok
* Handle event from parameter: Close

*/

EVENT_HANDLER Close_Event (value, count)
TAEINT value{]; /* integer vector */
FUNINT count; /* num of values */

{
/* Begin default generated code */

printf (“Panel Overview, parm Close: value = %d\n”,
count>0 ? value[0] : 0);

/* End default generated code */
* Begin generated code for Connection */

Overview_Destroy_Panel ();
SET_APPLICATION_DONE;

/* End generated code for Connection */
}

¢ o e o e ok e e 3k sk e o o e 2 3 3k 3 ok e sk e 3 3 2k e e i e e e e e 2k e o ke o e e ok sk ok s e i a3 ke ade 3k ik o s af ok o ok ol 3 3l o o e k3 ek ok ke

* Handle event from parameter: Events

*/

EVENT_HANDLER Events_Event (value, count)
TEXT *value[]; f* string pointers */
FUNINT count; /* num of values */

{
/* Begin default generated code */

printf (“Panel Overview, parm Events: value = %s\n",
count>0 ? value[0] : “none™);

/* End default generated code */
}

/* 0 e e e e 2 3 e e e e 30 e e e e 3 e o e e 3 e e e 3 e e e e e e e s e e e e e i e ok ol o 3k
* Handle event from parameter: Forward

*/

EVENT_HANDLER Forward_Event (value, count)
TEXT *valuel[]: [* string pointers */
FUNINT count; /* num of values */

{
/* Begin defaulit generated code */

printf (“Panel Overview, parm Forward: value = %s\n”,
count>0 ? value[0] : “*none™);

221

/* End default generated code */
}

3¢ 3 2 e 2k 230 2 2k 3k afe o 2 sk 2k e 3 e e 3 s e ek e ok ofe sl a2k o ok e 2k ke 3k ok 2 ok e ak ke ok ok ko sk ook ok e ko kK 2k ok ook i i ok ok ok ok
* Handle event from parameter: Help

*/

EVENT_HANDLER Help_Event (value. count)
TEXT *value{]; [* string pointers */
FUNINT count; /* num of values */

{
/* Begin default generated code */

printf (“Panel Overview, parm Help: value = %s\n”,
count>0 ? value[0] : “none”);

/* End default generated code */
}

a3k ok 3 3 2 ke ke a0 s o e 3 2 o e ok 3k e ok ok ke 3k ok ke 3 3 e sk ok 3 e ok e ok 3 e ok e s e 3 e 3 3k e ke e e 2 % 2k ko sk ko ks sle s ok sk ok ok ok
* Handle event from parameter: Index

*/

EVENT_HANDLER Index_Event (value, count)
TEXT *value[); /* string pointers */
FUNINT count; /* num of values */

{
/* Begin default generated code */

printf (*‘Panel Overview, parm Index: value = %s\n”,
count>0 ? value[0] : “none™);

/* End default generated code */
}

/***t**********************#*******#***#**#***t*****#***********#***t*#*#*

* Handle event from parameter: SetUp

*

EVENT_HANDLER SetUp_Event (value. count)
TEXT *value(]; /* stning pointers */
FUNINT count; /* num of values */

{
/* Begin default generated code */

printf (“Panel Overview, parm SetUp: value = %s\n”,
count>() ? value[0] : “none™);

/* End default generated code */
}

struct DISPATCH OverviewDispatch(] = {
{*BackUp", BackUp_Event}.
{*Close”, Close_Event]}.
{“Events”, Events_Event],

{“Forward”, Forward_Event},

{*“Help”. Help_Event},

{*Index”, Index_Event},

{

“SetUp”. SetUp_Event},

| {NULL, NULL) /* terminator entry */

223

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */

J* *** Eile: pan_Overview.h *** ¥/

[* *** Generated: Jan 13 13:52:27 1993 *** */
/*****#************t***************##t************#t**********************
* PURPOSE:

: Header file for panel: Overview

* REGENERATED:

* The following WorkBench operations will cause regeneration of this file:
* The panel’s name is changed (not title)

* For panel:

* Overview

*

* CHANGE LOG:

* 13-Jan-93 Initially generated... TAE

e ohe el o o o o ol e o e o e e ol s s ol e o e e ok e o o s o o e e ok i 3 ok a3k e e e 3 ol e ok ok ot sl ek ok ek s o o e ok ol sk o ok ok ok ok o ok ol

*/

#ifndef I_PAN_Overview /* prevent double include */
#define [_PAN_Overview 0

/* Vm objects and panel Id. */
extern Id OverviewTarget, Overview View, Overviewld;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH OverviewDispatch(];

/* Initialize OverviewTarget and OverviewView */
extern VOID Overview_Initialize_Panel ();

/* Create this panel and display it on the screen */
extern VOID Overview_Create_Panel ();

/* Destroy this panel and erase it from the screen */
extern VOID Overview_Destroy_Panel ();

/* Connect to this panel. Create it or change it’s state */

extern VOID Overview_Connect_Panel ();
#endif

224

APPENDIX C. BGLCSS 2.0 C++ PROGRAM LISTING

C++ files generated by TAE Plus contained is this appendix:

BGSetup.cc
BGSetup.h
BGSetup_creat_init.cc
BGSetup_init_pan.cc
Imakefile
item_SetUpBGs.h
pan_SetUpBGs.cc
pan_SetUpBGs.h

225

r---'------------------!!!F-----"--‘

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *=**
// *** File: BGSetup.cc ***

// *** Generated: Mar 10 07:51:07 1993 ***

LEPLITTTT P77 07000700770 00007 0707777077070 770777077777070777077¢0770777170777
// PURPOSE:

// This the main program of an application generated by the TAE Flus

// Code

// Generator.

// REGENERATED:
// This file is generated only once.

// NOTES:
// To turn this into a real application, do the following:

// 1. Each panel that has event generating parameters has a class

// definition file, named by concatenating the string *pan_* with the
// panel name followed by a *.h*. The methods are in a separate file,
// named by concatenating the string “pan_” with the panel name

// followed by a “.cc”. Each item has a class definition in a file
// named by concatenating the string *item_” with the panel name

// followed by a “.h*. Each parameter that you have defined to be

// *event-generating”, has an event handler method in the appropriate
// panel file. Add application-dependent logic to each event handler.
// (As generated by the WorkBench, each event handler simply logs the
// occurrence of the event.)

// 2. Toc build the program, type “make”. If the symbols TAEINC, ...,
// are not defined, the TAE shell (source) scripts $TAE/bin/csh///

// taesetup

// will define them.

// ADDITIONAL NOTES:
// 1. Each event handler has one argument: the actual wptevent

// 2. You gain access to non-event parameters by calling the Taevar
// and TaeVarTable methods using the instances of TaeVar and
// TaeVarTable asscciated with the panel.

// To access other panels, add an “#include” statement for each
// appropriate panel header file.

// CHANGE LOG:
// 10-Mar-93 Initially generated...TAE
///

#include <stream.h>

#include <taepanel.h>

#include <taeitem.h>

#include <taevm.h>

//

// PROGRAMMER NOTE:

// For each resource file in this application, add the appropriate
// header file

/7

#include *BGSetup.h”

Display * defaultDisplay;
TaeEventHandler *eventHandler;

main()
{

COUNT tlines, tcols;

CCDE ttype:;
f_force_lower (FALSE); // permit upper/lowercase file names
t_pinit (&tlines, &tcols, &ttype); // initialize terminal pkg

defaultDisplay = Wpt_CCInit (NULL);

/7

// PROGRAMMER NOTE:

// For each resource file in this application, add calls to the
// appropriate constructors

!/

BGSetupResource *BGSetupR = new BGSetupResource();

226

eventHandler = new TaeEventHandler():

//

// PROCGRAMMER NOTE:

// For each resource file in this application, calls to the

// appropriate Initialize_All_Panels and Create_Initial_Panels
// method must be added.

//

// Initialize all panel instances
BGSetupR->Initialize_All_Panels();

// Create and display the initial panel set

BGSetupR->Create_Initial_Panels({ *eventHandler);

eventHandler->ProcessEvents(); // Start event processing
Wpt_Finish(); // Close all display connections
}

227

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
// *** File: BGSetup.h ***

// *** Generated: Mar 10 07:51:07 1993 **=*

LHITELTIE7 00000007000 0000 0077707707 1070707000707077000707007770077177107777
// PURPQSE:

// This header file encapsulates the TaeResource that corresponds with
// the resource file /h/bglcss/scripts/guil/setup/c+-/BGSetup.res.res.

// REGENERATED:
// This file is generated only once.

// CHANGE LOG:
// 10-Mar-93 Initially generated...TAE
L1000 07700707777 7000707077770 070707777707 7007077770770707077707777077777777

#ifndef I_SIMPLE // prevent double include
#define I_SIMPLEO

#include <taepanel.h>

#include <taeitem.h>

#include <taevm.h>

/7

// BGSetupResource contains methods that have implication on the
// resource file BGSetup.res.

//

class BGSetupResource : public TaeResource

public:

BGSetupResource () : {(*/h/bglcss/scripts/gui/setup/c++/BGSetup.res®) {};
~BGSetupResource () {};

void Initialize_All_Panels ();
void Create_Initial_Panels (const TaeEventHandier& }:
}:

#endif

228

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *~~
// *** File: BGSetup_creat_init.cc ***

// *** Generated: Mar 10 07:51:07 1993 *=*x

LIILTLTE0T 7000000770707 07 0077777707770 707777000777077007700700707707771077
// PURPOSE:

// Displays all panels in the initial panel set of this resource file

// REMENERATED:

/s Tne following wWorkBench opsrazicr: will -~ .use regeneraticrn cf chic
// file:

// A panel is added to the initial panel set

/7 A panel is deleted from the initial panel set

// For the set of initial panels:

/7 SetUpBGs

// CHANGE LOG:
// 10-Mar-93 Initially generated...TAE
LIEP0LTETE7 7707007707077 707000000007 777777777777077777777077770777777

#include <stream.h>

#include <taepanel.h>

#include <taeitem.h>

#include <taevm.h>

#include “BGSetup.h”

// One *include” for each panel in the initial panel set

#include “pan_SetUpBGs.h"

void BGSetupResource::Create_Initial_Panels (const TaeEventHandler& eh)

SetUpBGsP->show(eh} ;
}

229

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***

1/
/!

*** File: BGSetup_init_pan.cc ***
*** Generated: Mar 10 07:51:07 1993 ***

LI111117107770777777707077077777077777707770777700777717077777707777777717177

//
/7

PURPOSE:
Initialize all panels in the resource file.

REGENERATED:

The fcllowing WorkBench operations will cause regeneraticn of this

file:

A panel is deleted

A new panel is added

A panel’s name is changed (not title)
For the panels:

AcfclLoad, AirData, BGData, BGShips, CloseAll,
Deletesh, Delship, Dtg, F44Fuel, F76Fuel,
NewBG, ordData,
OrdLoad, Ordsel, PrintJob, SaveNewB, SelBG,
CHANGE LOG:
10-Mar-83 Initially generated...TAE

DelRBG,
LackData,

SetUpBGs, Ship,

L1017 F007 7700007077700 7777707077770 0777700 0077077770000 007777707777077777
#include <stream.h>
#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>
#include "BGSetup.h”

// One *include” for each panel in resource file
#include “pan_AcftLoad.h”
#include “pan_AirData.h*
#include “pan_BGData.h”
#include “pan_BGsShips.h”
#include “pan_CloseaAll.h”
#¢include “pan_DelBG.h"
#include “pan_lCeletesh.h”
#include “pan_DelShip.h”
#include “pan_Dtg.h”
#include “pan_F44Fuel.h”
#include *pan_F76Fuel.h”
#include *pan_LackData.h”
#include “pan_NewEG.h”
#include “pan_oOrdbata.h”
#include “pan_oOrdLoad.h”
#include *pan_0Ordsel.h”
#include “pan_PrintJob.h”
#include *pan_SaveNewB.h”
#include “pan_SelBG.h"
#include “pan_SetUpBGs.h”
#include *pan_Ship.h*

void BGSetupResource::Initialize_All_Panels ()

// Create an instance of all panels
AcftLoadP = new AcftloadC {Collection());
AirDataP = new AirDataC (Collection(});
BGDataP = new BGDataC (Collection());
BGShipsP = new BGShipsC (Collection());
CloseAllP = new CloseAllC (Collection());
DelBGP = new DelBGC (Collection!());
DeleteShP = new DeleteShC (Collection(});
DelshipP = new DelsShipC (Collection());
DtgP = new DtgC (Collection());
F44FuelP = new F44FuelC (Collection());
F76FuelP = new F76FuelC {(Collection{));
LackDataP = new LackDataC (Collection()
NewBGP = new NewBGC (Collection());
OrdDataP = new OrdDataC (Collection!));
OrdLoadP = new OrdLoadC (Collection(j);
OrdSelP = new OrdselC (Collection{());
PrintJobP = new PrintJobC (Collection()
SaveNewBP = new SaveNewBC (Collection()
SelBGP = new SelBGC (Collectioni());
SetUpBGsP = new SetUpBGsC {Collection(}j;
ShipP = new ShipC (Collection());

}

)i

);
):

230

/* *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1982 **+* */
/* *** File: Imakefile *** */

/* *** Generated: Mar 10 07:51:07 1993 =** =/

/t iR AR A RS RS SRR R RS R RS RS S E R E R R R R N A R R R R S R S R R R R R R R R E R R R SRR R AR EEEEER SRR RS SN
* PURPOSE:

This is the Imakefile of a C++ application generated by the TAE Plus
Code Generator.

REGENERATED:
This flle 1s geneiatea oniy once.

NOTES:

1. To build your application, type “make”. The Makefile generated
by the TAE code generator invokes imake using this Imakefile to
generate an application specific Makefile.

2. If you change the name of your resource file or application, you
will need to either edit this file, or just delete it and regenerate
the code.

3. Edit this file to include your application specific scurce
files.

IR RS2 S AR S A RS A 2R R R SRR RS S R AR R R RS R R R R R R R R R R R RS R R R R R RS AR Y

FEEE SR B N I I

~

#define GeneratedApplication

/* PROGRAMMER NOTE:
* add a line ‘#include *Imake.RESFILENAME”’ for each resource file in
* your application.
*

#include “Imake.BGSetup”

/* PROGRAMMER NOTE:
* Insert application specific build parameters. These override
* definitions in the configuration files in $TAE/config.
*/
C++DEBUGFLAGS
LD++DEBUGFLAGS
APP_C++FLAGS
APP_LOAD_FLAGS

APP_LINKLIBS =-L/h/bglcss/CC2.1/SC1.0/1ibC.a

APP_DEPLIBS $(DEPLIBS)
APP_C++INCLUDES -I$(TAEINC)\
~IS(TAEINCXM)\
-I/h/bglcss/CC2.1/8C1.0/include/CC
PROGRAM = BGSetup

/* PROGRAMMEZIR NOTE:
* Add $(SRCS5_RESFILENAME) and $(OBJS_RESFILENAME) for each resource file
* in your application.
*/
GENSRCS = $(PROGRAM) .cc $(SRCS_BGSetup)
GENCBJS = $(PROGRAM) .o $(OBJS_RBGSetup)

/* PROGRAMMER NOTE:
* Add your application specific srcs and object files (that are not
* generated by the code generator) here.

v/
APP3RCS

APPCBJS

/* Macrc (defined in TAEmake.tmpl) to generate Makefile targets.
*/
CPlusPlusApplication({${PROGRAM) }

231

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
// *** File: item_SetUpBGs.h ***

// *** Generated: Mar 10 07:51:07 1993 *~~

[1100E07777 000770000070 777 707077777777 7070770077770707707777777707707070707777777
// PURPOSE:

// This file contains class definitions and instance declarations of

// all items in the TAE Plus panel:

// SetUpBGs

2 ey v R A
/¢ RESZNCRATED:

// The following WorkBench operations will cause regeneration of this
// file:

/7 The panel’s name is changed (not :Zitle)

// For panel:

/7 SetUpBG:=

// The following WorkBenc!: operations will also cause regeneration:
/7 An item is deleted

/7 A new item is added teo this panel

/7 An item’s name is changed (not ti..ie)

/7 An item’s generates events flag is changed

// For the panel items:

/7 Close, Delete, Edit, Help,

// New

/7

// CHANGE LOG:

// 10-Mar-93 Initially generated...TAE

L10700000E0 0077700000707 0700007707770 070070777070770700770770777707777177777
#ifndef I_ITEM_SetUpBGs // prevent double include
#define I_ITEM_SetUpRBGs 0

#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>

7/
// Class definitions for the items on this panel
//

[R R X A A R R A R A R AT T A A AR TR C AR E XX AR A A

class SetUpBGs_CloseC : public Taeltem
{

void React (WptEvent* event); // item’s event handler
public:
SetUpBGs_CloseC (TaePanel * a) : (a, “Close”) {;:

Yi
//t'*i"**it*‘ii’"t*tt‘***ﬁi"'**fi'tlt!!'t*1i'*t!tl’tttt'tttf(t'ttt'i’?

class SetUpBGs_DeleteC : public Taeltem
{

void React (WptEvent* event); // item’s event handler
public:
SetUpBGs_DeleteC (TaePanel * a) : f{a, *Delete”) {};

}:

VAR AAA SR AR RS RSRASES SRS sttt ettt i n sttt il i it i sl

c.ass SetUpBGs_EditC : public Taeltem
Ie

void React (WptEvent* event); // item’s event handler
public:
SetUpBGs_EditC (TaePanel * a) : (a, “Edit") {};

;

S A R A R R R T A T R T AR AN A A I AT T L AT XA T LT LR

class SetUpBGs_HelpC : public Taeltem
{

void React (WptEvent* event); // item’'s event handler
public:
SetUpBGs_HelpC (TaePanel * a) : (a, *Help”) {(};

i
1742000 AR A AR AR AR AR AR AR SRR AR R e R R R Al R A R

class SetUpBGs_NewC : public Taeltem

void React (WptEvent* event); // item’s event handler
public:

232

SetUpBGs_NewC (TaePanel * a) : (a, *“New”) {(}:
}:

/7

// Item instances

7/

extern SetUpBGs_CloseC *SetUpBGs_Closel;

extern SetUpBGs_DeleteC *SetUpBGs_Deletel;

extern SetUpBGs_EditC *SetUpBGs_EditI;

extern SetUpBGs_HelpC *SetUpBGs_HelplI;

extern SetUpBGs_NewC *SetUpBGs_ivewl;

#endif

233

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1962 ***
// *** File: pan_SetUpBGs.cc ***

// *** Generated: Mar 10 07:51:07 1993 ***

PELTEIIELLT PP 77777707707 0777070777777007777777777270/07707707774
// PURPOSE:

// This file encapsulates the TAE Plus panel: SetUpBGs

// SetUpBGsSP is an instance of the class SetUpBGsC which is a derived
// class of the TaePanel class. Access to public methods and the

// SetUpBGsP instance from other files is enabled by inserting

// ‘#include “pan_SetUpBGs.h”'.

// NCTES:

// For each parameter that you have defined to be “event-generating”
// in this panel, there is an event handler method defined below.

// Each handler is a method called React in the corresponding item

// class.

// Add application-dependent logic to each event handler. (As

// generated

// by the WorkBench, each event handler simply logs the occurrence of
// the

// event.)

// You may want to flag any changes you make to this file so that if
// you

// regenerate this file, you can more easilyv cut and paste your

// modifications back in. For example:

/7 generated ccde ...
/7 // {+) ADDEL yourinitials
// your code

/7 // (-) ADDED

// more generated code
7/

7/

/1

// REGENERATED:

// The following WorkBench operations will cause regeneration of this
// file:

/7 The panel’s name is changed (not title!

// For panel:

144 SetUpBGs

// The following WorkBench operations will also cause regeneration:
/7 An item is deleted

/! A new item is added to this panel

// An item’'s name is changed (not title)

I/ An izem’s data type is changed

7/ An item’s generates events flag is changed

/7 An item’s valids changed (if item is type string and c~nnected)
/ An itzem’s connection information is changed

// For the panel items:

/7 Close, Delete, Edit, Help,

/7 New

// CHAMNGE LCG:
// 1C-Mar-93 Initially generated...TAE
L1077 0700000000000 L 0000 L PP P 0 I PP E7 770 b iirr77 77070 iirs 7

#incluce <stream.h>
tinclude <taepranel.h>
$include <taeizem.h>
t4include <taevr.h>

#include “pan_SetUpBGs.h” // Panel class declaration
4include “iter_SetUpBGs.h” /7 Item class declarations
// One ”include” for each connected panel

#include "pan_CloseAll.h”

#include “pan_DelBG.h"

$include “pan_BGData.h”

#include “pan_NewBG.h*

7/

// Panel Instance

7/

SetUpBGsC *SetUpBGsP;

234

~~

/7

// Item Instances

/7

SetUpBGs_CloseC *SetUpBGs_Closel;
SetUpBGs_DeleteC *SetUpBGs_Deletel;
SetUpBGs_EditC *SetUpBGs_EditI;
SetUpBGs_HelpC *SetUpBGs_Helpl;
SetUpBGs_NewC *SetUpBGs_Newl;

7/

// Panel class constructor

/7

SetUpBGsC: : SetUpBGsC (TaeCollection *collect) : (“SetUpBGs”, collect)
{
/7
// create an instance cf each item in the panel.
//
SetUpBGs_Closel = new SetUpBGs_CloseC (thig};
SetUpRGs_Deletel = new SetUpBGs_DeleteC (this);
SetUpBGs_Editl = new SetUpBGs_EditC (this);
SetUpBGs_Helpl = new SetUpBGs_HelpC (this);
SetUpBGs_Newl = new SetUpBGs_NewC (this);
}

7/

// Panel class destructor

/7

SetUpBGsC: : ~SetUpBGsC ()
{
delete SetUpBGs_Closel;
delete SetUpBGs_Deletel;
delete SetUpBGs_EditI;
delete SetUpBGs_HelpI:;
delete SetUpBGs_NewlI:;
}

(L1770 0007077711777 7 7777777770777 770777 PP 7777777 777777
// Handle event from parameter: Close
//
void SetUpBGs_CloseC::React (WptEvent *event)
{

// get the target variable from the event
TaeVar *itemvariable = GetTargetvVar{ (WptEvent *)event);

cout << “Panel “ << Parent()->Name()
<< *, parm * << itemVariable-~>Name/()
<< *: value = *
<< (itemVariable->Count()>0 ? itemVariable->String() : *“none” !
<< *\n”;
cout.. flush();

// Begin generated code far Connection
CloseAllP->Show(*Parent () ->Handler());

// End generated code for Connection
}

L1100 ELETT 0075777770000 077 00070707770 7777700770777077207727777
// Handle event from parameter: Delete
//
void SetUpBGs_DeleteC: :React (WptEvent tevent)
{
// get the target variable from the event
TaeVar *itemVariable = GetTargetVar((WptEvent *)event };

cout << “Panel * << Parent()->Name()
<< *, parm * << itemvVariable-sName()
<< “: value = ~
<< (\icomVariable->Count()>0 ? itemVariable->String(; : “none”)
<< “\n*;

235

cout.flushi);
// Begin generated code for Connection
DelBGP->Show(*Parent ()->Handler (). ;

// End generated code for Connection

J

LI77IIT00 77777707007 0077007777 7777777770007 7777777 007077 07777770707077777777
// Handle event from parameter: Edit

/7

void SetUpBGs_ZditC::React (WptEvent *event)

// get the target variable from the event -
TaeVar *itemVariable = GetTargetVar{ (WptEvent *jevent };

cout << “Panel * << Parent{)->Name!)
<< *, parm “ << itemvVariable->Name()
<< “: value = *
<< { itemVariable->Count ()>0 ? itemvariable->String(}) : “nsne”)
<< *“\n”;
cout.flushi();

// Begin generated code for Connection

/* TCL: quit */

// End generated code for Connecticn
}

L1071 077 77770700070 07777777777777777770077007707777707777277777777277/0777777
// Handle event from parameter: Help

//

void‘SetUpBGs_HelpC::React {WptEvent *event)

{
// get the target variable from the event
TaeVar *itemVariable = GetTargetVar((WptEvenh *)event);

cout << “Panel “ << Parent{()->Name()
<< ", parm “ << itemvVariable->Name()
<< *: value = ~
<< | itemvariable->Count()>0 ? itemvVariable->String() : “none” |
<< *\n*;
cout.flushi);

-

PILEITITIEL T8I0 7 7777777700 07007070707077070700700770707777770777707/777
// Handle event from parameter: New
44
void SetUpBGs_New(::React (WptEvent *event)
{

// get the target variable from the event
TaeVar *itemVariable = GetTargetvVar!((WptEvent *jevent j;

cout << "Panel * << Parent{)->Name!)
<< ", parm “ << itemVariable-->Name!()
<< “: value = ~
<< { itemVariable->Count(}>0 ? itemVariable->String(! : “ncne~” !
<< *\n";
cout.flushi);

// Begir. generated code for Connecticn (

NewBGP->Show! *Parent (} ->Handler(}):
/* TCL: quiz */

/7 End generated code for Connection

236

r"""""""""'-""""""""""""!!!!!!!""""""""-"-'*

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 =**
// *** File: pan_SetUpBGs.h ***

// *** Generated: Mar 10 07:51:07 1993 ***

LIPIITLLLTL7 7770000101777 7707770007 77707070077770770777707070070777777777
// PURPOSE:

// Header {file for panel: SetUpBGs

//

/7

& // For panel:

// SetUpBGs

//

// CHANGE LOG:

// 10-Mar-93 Initially generated...TAE

JIE70707001 0077770000000 707 00707777 777007700770770770077770700001777777717

A #ifndef I_PAN_SetUpBGs // prevent double include
#define I_PAN_SetUpBGs 0

#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>

7/

// Class definition for the SetUpBGsC class which is a derived class
// of TaeFanel class.

/7

class SetUpBGsC : public TaePanel
{

public:
SetUpBGsC (TaeCollection *collect);
~5etUpBGsC ();

;

r/

// The instance of SetUpBGsC class
/7

extern SetUprBGsC *SetUpBGsP;

sendif

237

REFERENCES

[CARGILL 92] Cargill, T., "Using Multiple Inheritance in C++", Supplement to Dr.
Dobb’s Journal, pp. 48-51, December 1992.

[COPLIEN 92] Coplien, J. O., Advanced C++: Programming Styles and Idioms,
Addison-Wesley Publishing Company, 1992.

[FERNANDES 92]Fernandes, K., User Interface Specifications for Navy Command and
Control Systems Version 1.1, Naval Command, Control, and Ocean
Surveillance Center, Research, Development, Test, and Evaluation Division,
San Diego, California, June 1992.

(HAMMONDS 91] Hammonds, K., "Software Made Simple: Will Object-Oriented
Programming Transform the Computer Industry?", Business Week, pp. 92-
100, 30 September, 1991.

[HOLUB 92] Holub, A. L., C+ C++: Programming with Objects in C and C++, McGraw-
Hill, Inc., 1992.

[INRI 91a] Inter-National Research Institute, Government Off-The-Shelf (GOTS)I1.1
Style Guide, 1991.

[INRI91b] Inter-National Research Institute, Government Off-The-Shelf (GOTS)1.1
Software Architecture, 1991.

[INRI 92a] Inter-National Research Institute, TDBM Service, Application
Programmer’s Interface, Unified Build 2.0, April 1992.

[INRI 92F+] Inter-National Research Institute, Unified Build Application/TDA Toolkit:
Application Programmer’s Interface, Unified Build 2.0, April 1992.

[INRI 92c] Inter-National Research Institute, JOTS II 2.0 User’s Guide Draft, July
1992.

[INRI 92d] Inter-National Research Institute, Wizard Toolkit, Application
Programmer’s Interface, Unified Build 2.0, April 1992.

[LEWIS 92] Lewis, J. A. et al, “On the Relationship Between the Object-Oriented
Paradigm and Software Reuse: An Empirical Investigation”, Journal of
Object-Oriented Programming, pp.35-41, July/August 1992.

[MEYER 88]Meyer, B., Object-Oriented Software Construction, Prentice Hall, 1988.
[INASA 91a] NASA Goddard Space Flight Center, TAE Plus Overview V5.1, April 1991.

238

[NASA 92a] NASA Goddard Space Flight Center, Programming Tips and Tricks V5.1,
1992

[NASA 92b] NASA Goddard Space Flight Center, TAE Plus User Interface Developer's
Guide V5.2 Beta, October 1992.

[PERRY 92] Perry, G., Moving from C to C++, SAMS Publishing, 1992.

[SCHRADY 90] Schrady, D. A., Wadsworth, D. B., Laverty, R. G., Bednarski, W. S.,
Predicting Ship Fuel Consumption, Technical Report NPSOR-91-03, Naval
Postgraduate School, Monterey, California, October 1990.

(SCHRADY 91] Schrady, D. A., Wadsworth, D. B., User's Guide for the Battle Group
Logistics Coordinator Support System (BGLCSS), Technical Report
NPSOR-91-08, Naval Postgraduate School, Monterey, California, February
1991.

[SETHI 90] Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley Publishing Company, 1990.

[SHIFFMAN 92]Shiffman, H., "Toward a Less Object-Oriented View of C++",
Supplement to Dr. Dobb’s Journal, pp. 35-38, December 1992.

239

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexanderia, VA 22304-6145

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943-5002

Chairman

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. C. Thomas Wu

Code CS/Wq

Associate Professor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

Roger Stemp

Code CS/Sp

Adjunct Instructor, Computer Science Department
Naval Postgraduate School

Monterey, CA 93943-5000

LCDR Donald P. Brutzman
Code OR/Br
Adjunct Professor, Operations Research Department

Naval Postgraduate School
Monterey, CA 93943-5000

Commander, Space and Navy Warfare Systems Command
Don Wayburn, PD-60-L1
Washington, D.C. 20363

Bernadette C. Brooks
P.O. Box 48
Kensington, MD 20895

240

